logo
  • Tutorials
  • API
  • Examples Gallery
  • Notebooks Gallery
  • Other pages
  • Blog Gallery
  • Fast runtime with onnxruntime
  • Benchmark inference for scikit-learn models
  • What is the opset number?
  • Train and deploy a scikit-learn pipeline
  • Convert a pipeline with a LightGBM classifier
  • Intermediate results and investigation
  • Store arrays in one onnx graph
  • Black list operators when converting
  • Forward backward on a neural network on GPU
  • Train a scikit-learn neural network with onnxruntime-training on GPU
  • Modify the ONNX graph
  • Converter for WOE
  • Train a linear regression with forward backward
  • Benchmark ONNX conversion
  • Dataframe as an input
  • Funny discrepancies
  • Train a linear regression with onnxruntime-training
  • Convert a pipeline with a LightGBM regressor
  • Forward backward on a neural network on GPU (Nesterov) and penalty
  • Implement a new converter using other converters
  • One model, many possible conversions with options
  • Profile onnxruntime execution
  • Change the number of outputs by adding a parser
  • Two ways to implement a converter
  • Convert a pipeline with a XGBoost model
  • Choose appropriate output of a classifier
  • A new converter with options
  • Transfer Learning with ONNX
  • Profiling of ONNX graph with onnxruntime
  • Issues when switching to float
  • Implement a new converter
  • Benchmark onnxruntime optimization
  • Benchmark, comparison scikit-learn - forward-backward
  • Benchmark, comparison scikit-learn - onnxruntime-training
  • Benchmark operator LeakyRelu
  • Benchmark operator Slice
  • Benchmark, comparison torch - forward-backward
  • Converter for WOEEncoder from categorical_encoder
  • Benchmark onnxruntime API: run or …
  • Benchmark, comparison sklearn - forward-backward - classification
  • TfIdf and sparse matrices
  • Benchmark inference for a linear regression
  • Compares numpy to onnxruntime on simple functions
  • Fast design with a python runtime
  • Benchmark and profile of operator Slice
  • Add a parser to handle dataframes
  • Train a linear regression with onnxruntime-training on GPU in details
  • Train a linear regression with onnxruntime-training in details

Examples Gallery¶

Fast runtime with onnxruntime

Fast runtime with onnxruntime¶

Benchmark inference for scikit-learn models

Benchmark inference for scikit-learn models¶

What is the opset number?

What is the opset number?¶

Train and deploy a scikit-learn pipeline

Train and deploy a scikit-learn pipeline¶

Convert a pipeline with a LightGBM classifier

Convert a pipeline with a LightGBM classifier¶

Intermediate results and investigation

Intermediate results and investigation¶

Store arrays in one onnx graph

Store arrays in one onnx graph¶

Black list operators when converting

Black list operators when converting¶

Forward backward on a neural network on GPU

Forward backward on a neural network on GPU¶

Train a scikit-learn neural network with onnxruntime-training on GPU

Train a scikit-learn neural network with onnxruntime-training on GPU¶

Modify the ONNX graph

Modify the ONNX graph¶

Converter for WOE

Converter for WOE¶

Train a linear regression with forward backward

Train a linear regression with forward backward¶

Benchmark ONNX conversion

Benchmark ONNX conversion¶

Dataframe as an input

Dataframe as an input¶

Funny discrepancies

Funny discrepancies¶

Train a linear regression with onnxruntime-training

Train a linear regression with onnxruntime-training¶

Convert a pipeline with a LightGBM regressor

Convert a pipeline with a LightGBM regressor¶

Forward backward on a neural network on GPU (Nesterov) and penalty

Forward backward on a neural network on GPU (Nesterov) and penalty¶

Implement a new converter using other converters

Implement a new converter using other converters¶

One model, many possible conversions with options

One model, many possible conversions with options¶

Profile onnxruntime execution

Profile onnxruntime execution¶

Change the number of outputs by adding a parser

Change the number of outputs by adding a parser¶

Two ways to implement a converter

Two ways to implement a converter¶

Convert a pipeline with a XGBoost model

Convert a pipeline with a XGBoost model¶

Choose appropriate output of a classifier

Choose appropriate output of a classifier¶

A new converter with options

A new converter with options¶

Transfer Learning with ONNX

Transfer Learning with ONNX¶

Profiling of ONNX graph with onnxruntime

Profiling of ONNX graph with onnxruntime¶

Issues when switching to float

Issues when switching to float¶

Implement a new converter

Implement a new converter¶

Benchmark onnxruntime optimization

Benchmark onnxruntime optimization¶

Benchmark, comparison scikit-learn - forward-backward

Benchmark, comparison scikit-learn - forward-backward¶

Benchmark, comparison scikit-learn - onnxruntime-training

Benchmark, comparison scikit-learn - onnxruntime-training¶

Benchmark operator LeakyRelu

Benchmark operator LeakyRelu¶

Benchmark operator Slice

Benchmark operator Slice¶

Benchmark, comparison torch - forward-backward

Benchmark, comparison torch - forward-backward¶

Converter for WOEEncoder from categorical_encoder

Converter for WOEEncoder from categorical_encoder¶

Benchmark onnxruntime API: run or ...

Benchmark onnxruntime API: run or …¶

Benchmark, comparison sklearn - forward-backward - classification

Benchmark, comparison sklearn - forward-backward - classification¶

TfIdf and sparse matrices

TfIdf and sparse matrices¶

Benchmark inference for a linear regression

Benchmark inference for a linear regression¶

Compares numpy to onnxruntime on simple functions

Compares numpy to onnxruntime on simple functions¶

Fast design with a python runtime

Fast design with a python runtime¶

Benchmark and profile of operator Slice

Benchmark and profile of operator Slice¶

Add a parser to handle dataframes

Add a parser to handle dataframes¶

Train a linear regression with onnxruntime-training on GPU in details

Train a linear regression with onnxruntime-training on GPU in details¶

Train a linear regression with onnxruntime-training in details

Train a linear regression with onnxruntime-training in details¶

Download all examples in Python source code: gyexamples_python.zip

Download all examples in Jupyter notebooks: gyexamples_jupyter.zip

Gallery generated by Sphinx-Gallery

previous

Gradient

next

Benchmark, comparison torch - forward-backward

© Copyright 2022, Xavier Dupré.

Created using Sphinx 4.4.0.