Pow - 7 vs 13#

Next section compares an older to a newer version of the same operator after both definition are converted into markdown text. Green means an addition to the newer version, red means a deletion. Anything else is unchanged.

Files changed (1) hide show
  1. Pow7 → Pow13 +4 -20
Pow7 → Pow13 RENAMED
@@ -1 +1 @@
1
1
  Pow takes input data (Tensor<T>) and exponent Tensor, and
2
2
  produces one output data (Tensor<T>) where the function f(x) = x^exponent,
3
3
  is applied to the data tensor elementwise.
4
4
  This operator supports **multidirectional (i.e., Numpy-style) broadcasting**; for more details please check Broadcasting in ONNX <https://github.com/onnx/onnx/blob/master/docs/Broadcasting.md>_.
5
5
  **Inputs**
6
6
  * **X** (heterogeneous) - **T**:
7
7
  First operand, base of the exponent.
8
- * **Y** (heterogeneous) - **T1**:
8
+ * **Y** (heterogeneous) - **T**:
9
9
  Second operand, power of the exponent.
10
10
  **Outputs**
11
11
  * **Z** (heterogeneous) - **T**:
12
- Output tensor
12
+ Output tensor.
13
13
  **Type Constraints**
14
14
  * **T** in (
15
- tensor(bfloat16),
16
15
  tensor(double),
17
16
  tensor(float),
18
- tensor(float16),
17
+ tensor(float16)
19
- tensor(int32),
20
- tensor(int64)
21
18
  ):
22
- Constrain input X and output types to float/int tensors.
19
+ Constrain input and output types to float tensors.- * **T1** in (
23
- tensor(double),
24
- tensor(float),
25
- tensor(float16),
26
- tensor(int16),
27
- tensor(int32),
28
- tensor(int64),
29
- tensor(int8),
30
- tensor(uint16),
31
- tensor(uint32),
32
- tensor(uint64),
33
- tensor(uint8)
34
- ):
35
- Constrain input Y types to float/int tensors.