Selu#

Selu - 6#

Version

  • name: Selu (GitHub)

  • domain: main

  • since_version: 6

  • function: True

  • support_level: SupportType.COMMON

  • shape inference: True

This version of the operator has been available since version 6.

Summary

Selu takes one input data (Tensor<T>) and produces one output data (Tensor<T>) where the scaled exponential linear unit function, y = gamma * (alpha * e^x - alpha) for x <= 0, y = gamma * x for x > 0, is applied to the tensor elementwise.

Attributes

  • alpha: Coefficient of SELU default to 1.67326319217681884765625 (i.e., float32 approximation of 1.6732632423543772848170429916717).

  • gamma: Coefficient of SELU default to 1.05070102214813232421875 (i.e., float32 approximation of 1.0507009873554804934193349852946).

Inputs

  • X (heterogeneous) - T: Input tensor

Outputs

  • Y (heterogeneous) - T: Output tensor

Type Constraints

  • T in ( tensor(double), tensor(float), tensor(float16) ): Constrain input and output types to float tensors.

Examples

default

import numpy as np
import onnx

node = onnx.helper.make_node(
    "Selu", inputs=["x"], outputs=["y"], alpha=2.0, gamma=3.0
)

x = np.array([-1, 0, 1]).astype(np.float32)
# expected output [-3.79272318, 0., 3.]
y = (
    np.clip(x, 0, np.inf) * 3.0
    + (np.exp(np.clip(x, -np.inf, 0)) - 1) * 2.0 * 3.0
)
expect(node, inputs=[x], outputs=[y], name="test_selu_example")

x = np.random.randn(3, 4, 5).astype(np.float32)
y = (
    np.clip(x, 0, np.inf) * 3.0
    + (np.exp(np.clip(x, -np.inf, 0)) - 1) * 2.0 * 3.0
)
expect(node, inputs=[x], outputs=[y], name="test_selu")

_selu_default

import numpy as np
import onnx

default_alpha = 1.67326319217681884765625
default_gamma = 1.05070102214813232421875
node = onnx.helper.make_node(
    "Selu",
    inputs=["x"],
    outputs=["y"],
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = (
    np.clip(x, 0, np.inf) * default_gamma
    + (np.exp(np.clip(x, -np.inf, 0)) - 1) * default_alpha * default_gamma
)
expect(node, inputs=[x], outputs=[y], name="test_selu_default")

Selu - 1#

Version

  • name: Selu (GitHub)

  • domain: main

  • since_version: 1

  • function: False

  • support_level: SupportType.COMMON

  • shape inference: False

This version of the operator has been available since version 1.

Summary

Selu takes one input data (Tensor<T>) and produces one output data (Tensor<T>) where the scaled exponential linear unit function, y = gamma * (alpha * e^x - alpha) for x <= 0, y = gamma * x for x > 0, is applied to the tensor elementwise.

Attributes

  • alpha: Coefficient of SELU default to 1.6732.

  • consumed_inputs: legacy optimization attribute.

  • gamma: Coefficient of SELU default to 1.0507.

Inputs

  • X (heterogeneous) - T: Input tensor

Outputs

  • Y (heterogeneous) - T: Output tensor

Type Constraints

  • T in ( tensor(double), tensor(float), tensor(float16) ): Constrain input and output types to float tensors.