Sqrt#
Sqrt - 13#
Version
name: Sqrt (GitHub)
domain: main
since_version: 13
function: False
support_level: SupportType.COMMON
shape inference: True
This version of the operator has been available since version 13.
Summary
Square root takes one input data (Tensor<T>) and produces one output data (Tensor<T>) where the square root is, y = x^0.5, is applied to the tensor elementwise. If x is negative, then it will return NaN.
Inputs
X (heterogeneous) - T: Input tensor
Outputs
Y (heterogeneous) - T: Output tensor
Type Constraints
T in ( tensor(bfloat16), tensor(double), tensor(float), tensor(float16) ): Constrain input and output types to float tensors.
Examples
default
import numpy as np
import onnx
node = onnx.helper.make_node(
"Sqrt",
inputs=["x"],
outputs=["y"],
)
x = np.array([1, 4, 9]).astype(np.float32)
y = np.sqrt(x) # expected output [1., 2., 3.]
expect(node, inputs=[x], outputs=[y], name="test_sqrt_example")
x = np.abs(np.random.randn(3, 4, 5).astype(np.float32))
y = np.sqrt(x)
expect(node, inputs=[x], outputs=[y], name="test_sqrt")
Sqrt - 6#
Version
name: Sqrt (GitHub)
domain: main
since_version: 6
function: False
support_level: SupportType.COMMON
shape inference: True
This version of the operator has been available since version 6.
Summary
Square root takes one input data (Tensor<T>) and produces one output data (Tensor<T>) where the square root is, y = x^0.5, is applied to the tensor elementwise. If x is negative, then it will return NaN.
Inputs
X (heterogeneous) - T: Input tensor
Outputs
Y (heterogeneous) - T: Output tensor
Type Constraints
T in ( tensor(double), tensor(float), tensor(float16) ): Constrain input and output types to float tensors.
Sqrt - 1#
Version
name: Sqrt (GitHub)
domain: main
since_version: 1
function: False
support_level: SupportType.COMMON
shape inference: False
This version of the operator has been available since version 1.
Summary
Square root takes one input data (Tensor<T>) and produces one output data (Tensor<T>) where the square root is, y = x^0.5, is applied to the tensor elementwise. If x is negative, then it will return NaN.
Attributes
consumed_inputs: legacy optimization attribute.
Inputs
X (heterogeneous) - T: Input tensor
Outputs
Y (heterogeneous) - T: Output tensor
Type Constraints
T in ( tensor(double), tensor(float), tensor(float16) ): Constrain input and output types to float tensors.