Mod#
Mod - 13#
Version
name: Mod (GitHub)
domain: main
since_version: 13
function: False
support_level: SupportType.COMMON
shape inference: True
This version of the operator has been available since version 13.
Summary
- Performs element-wise binary modulus (with Numpy-style broadcasting support).
The sign of the remainder is the same as that of the Divisor.
Mod operator can also behave like C fmod() or numpy.fmod. In this case, the sign of the remainder however, will be the same as the Dividend (in contrast to integer mod). To force a behavior like numpy.fmod() an ‘fmod’ Attribute is provided. This attribute is set to 0 by default causing the behavior to be like integer mod. Setting this attribute to 1 causes the remainder to be calculated similar to that of numpy.fmod().
If the input type is floating point, then fmod attribute must be set to 1.
In case of dividend being zero, the results will be platform dependent.
This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check Broadcasting in ONNX.
Attributes
fmod: Whether the operator should behave like fmod (default=0 meaning it will do integer mods); Set this to 1 to force fmod treatment
Inputs
A (heterogeneous) - T: Dividend tensor
B (heterogeneous) - T: Divisor tensor
Outputs
C (heterogeneous) - T: Remainder tensor
Type Constraints
T in ( tensor(bfloat16), tensor(double), tensor(float), tensor(float16), tensor(int16), tensor(int32), tensor(int64), tensor(int8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(uint8) ): Constrain input and output types to high-precision numeric tensors.
Examples
_mod_mixed_sign_float64
import numpy as np
import onnx
node = onnx.helper.make_node("Mod", inputs=["x", "y"], outputs=["z"], fmod=1)
x = np.array([-4.3, 7.2, 5.0, 4.3, -7.2, 8.0]).astype(np.float64)
y = np.array([2.1, -3.4, 8.0, -2.1, 3.4, 5.0]).astype(np.float64)
z = np.fmod(x, y) # expected output [-0.1, 0.4, 5. , 0.1, -0.4, 3.]
expect(node, inputs=[x, y], outputs=[z], name="test_mod_mixed_sign_float64")
_mod_mixed_sign_float32
import numpy as np
import onnx
node = onnx.helper.make_node("Mod", inputs=["x", "y"], outputs=["z"], fmod=1)
x = np.array([-4.3, 7.2, 5.0, 4.3, -7.2, 8.0]).astype(np.float32)
y = np.array([2.1, -3.4, 8.0, -2.1, 3.4, 5.0]).astype(np.float32)
z = np.fmod(
x, y
) # expected output [-0.10000038, 0.39999962, 5. , 0.10000038, -0.39999962, 3.]
expect(node, inputs=[x, y], outputs=[z], name="test_mod_mixed_sign_float32")
_mod_mixed_sign_float16
import numpy as np
import onnx
node = onnx.helper.make_node("Mod", inputs=["x", "y"], outputs=["z"], fmod=1)
x = np.array([-4.3, 7.2, 5.0, 4.3, -7.2, 8.0]).astype(np.float16)
y = np.array([2.1, -3.4, 8.0, -2.1, 3.4, 5.0]).astype(np.float16)
z = np.fmod(
x, y
) # expected output [-0.10156, 0.3984 , 5. , 0.10156, -0.3984 , 3.]
expect(node, inputs=[x, y], outputs=[z], name="test_mod_mixed_sign_float16")
_mod_mixed_sign_int64
import numpy as np
import onnx
node = onnx.helper.make_node(
"Mod",
inputs=["x", "y"],
outputs=["z"],
)
x = np.array([-4, 7, 5, 4, -7, 8]).astype(np.int64)
y = np.array([2, -3, 8, -2, 3, 5]).astype(np.int64)
z = np.mod(x, y) # expected output [ 0, -2, 5, 0, 2, 3]
expect(node, inputs=[x, y], outputs=[z], name="test_mod_mixed_sign_int64")
_mod_mixed_sign_int32
import numpy as np
import onnx
node = onnx.helper.make_node(
"Mod",
inputs=["x", "y"],
outputs=["z"],
)
x = np.array([-4, 7, 5, 4, -7, 8]).astype(np.int32)
y = np.array([2, -3, 8, -2, 3, 5]).astype(np.int32)
z = np.mod(x, y) # expected output [ 0, -2, 5, 0, 2, 3]
expect(node, inputs=[x, y], outputs=[z], name="test_mod_mixed_sign_int32")
_mod_mixed_sign_int16
import numpy as np
import onnx
node = onnx.helper.make_node(
"Mod",
inputs=["x", "y"],
outputs=["z"],
)
x = np.array([-4, 7, 5, 4, -7, 8]).astype(np.int16)
y = np.array([2, -3, 8, -2, 3, 5]).astype(np.int16)
z = np.mod(x, y) # expected output [ 0, -2, 5, 0, 2, 3]
expect(node, inputs=[x, y], outputs=[z], name="test_mod_mixed_sign_int16")
_mod_mixed_sign_int8
import numpy as np
import onnx
node = onnx.helper.make_node(
"Mod",
inputs=["x", "y"],
outputs=["z"],
)
x = np.array([-4, 7, 5, 4, -7, 8]).astype(np.int8)
y = np.array([2, -3, 8, -2, 3, 5]).astype(np.int8)
z = np.mod(x, y) # expected output [ 0, -2, 5, 0, 2, 3]
expect(node, inputs=[x, y], outputs=[z], name="test_mod_mixed_sign_int8")
_mod_uint8
import numpy as np
import onnx
node = onnx.helper.make_node(
"Mod",
inputs=["x", "y"],
outputs=["z"],
)
x = np.array([4, 7, 5]).astype(np.uint8)
y = np.array([2, 3, 8]).astype(np.uint8)
z = np.mod(x, y) # expected output [0, 1, 5]
expect(node, inputs=[x, y], outputs=[z], name="test_mod_uint8")
_mod_uint16
import numpy as np
import onnx
node = onnx.helper.make_node(
"Mod",
inputs=["x", "y"],
outputs=["z"],
)
x = np.array([4, 7, 5]).astype(np.uint16)
y = np.array([2, 3, 8]).astype(np.uint16)
z = np.mod(x, y) # expected output [0, 1, 5]
expect(node, inputs=[x, y], outputs=[z], name="test_mod_uint16")
_mod_uint32
import numpy as np
import onnx
node = onnx.helper.make_node(
"Mod",
inputs=["x", "y"],
outputs=["z"],
)
x = np.array([4, 7, 5]).astype(np.uint32)
y = np.array([2, 3, 8]).astype(np.uint32)
z = np.mod(x, y) # expected output [0, 1, 5]
expect(node, inputs=[x, y], outputs=[z], name="test_mod_uint32")
_mod_uint64
import numpy as np
import onnx
node = onnx.helper.make_node(
"Mod",
inputs=["x", "y"],
outputs=["z"],
)
x = np.array([4, 7, 5]).astype(np.uint64)
y = np.array([2, 3, 8]).astype(np.uint64)
z = np.mod(x, y) # expected output [0, 1, 5]
expect(node, inputs=[x, y], outputs=[z], name="test_mod_uint64")
_mod_int64_fmod
import numpy as np
import onnx
node = onnx.helper.make_node("Mod", inputs=["x", "y"], outputs=["z"], fmod=1)
x = np.array([-4, 7, 5, 4, -7, 8]).astype(np.int64)
y = np.array([2, -3, 8, -2, 3, 5]).astype(np.int64)
z = np.fmod(x, y) # expected output [ 0, 1, 5, 0, -1, 3]
expect(node, inputs=[x, y], outputs=[z], name="test_mod_int64_fmod")
_mod_broadcast
import numpy as np
import onnx
node = onnx.helper.make_node(
"Mod",
inputs=["x", "y"],
outputs=["z"],
)
x = np.arange(0, 30).reshape([3, 2, 5]).astype(np.int32)
y = np.array([7]).astype(np.int32)
z = np.mod(x, y)
# array([[[0, 1, 2, 3, 4],
# [5, 6, 0, 1, 2]],
# [[3, 4, 5, 6, 0],
# [1, 2, 3, 4, 5]],
# [[6, 0, 1, 2, 3],
# [4, 5, 6, 0, 1]]], dtype=int32)
expect(node, inputs=[x, y], outputs=[z], name="test_mod_broadcast")
Mod - 10#
Version
name: Mod (GitHub)
domain: main
since_version: 10
function: False
support_level: SupportType.COMMON
shape inference: True
This version of the operator has been available since version 10.
Summary
- Performs element-wise binary modulus (with Numpy-style broadcasting support).
The sign of the remainder is the same as that of the Divisor.
Mod operator can also behave like C fmod() or numpy.fmod. In this case, the sign of the remainder however, will be the same as the Dividend (in contrast to integer mod). To force a behavior like numpy.fmod() an ‘fmod’ Attribute is provided. This attribute is set to 0 by default causing the behavior to be like integer mod. Setting this attribute to 1 causes the remainder to be calculated similar to that of numpy.fmod().
If the input type is floating point, then fmod attribute must be set to 1.
In case of dividend being zero, the results will be platform dependent.
This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check Broadcasting in ONNX.
Attributes
fmod: Whether the operator should behave like fmod (default=0 meaning it will do integer mods); Set this to 1 to force fmod treatment
Inputs
A (heterogeneous) - T: Dividend tensor
B (heterogeneous) - T: Divisor tensor
Outputs
C (heterogeneous) - T: Remainder tensor
Type Constraints
T in ( tensor(double), tensor(float), tensor(float16), tensor(int16), tensor(int32), tensor(int64), tensor(int8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(uint8) ): Constrain input and output types to high-precision numeric tensors.