CumSum#
CumSum - 14#
Version
name: CumSum (GitHub)
domain: main
since_version: 14
function: False
support_level: SupportType.COMMON
shape inference: True
This version of the operator has been available since version 14.
Summary
Performs cumulative sum of the input elements along the given axis. By default, it will do the sum inclusively meaning the first element is copied as is. Through an exclusive attribute, this behavior can change to exclude the first element. It can also perform summation in the opposite direction of the axis. For that, set reverse attribute to 1.
Example:
input_x = [1, 2, 3]
axis=0
output = [1, 3, 6]
exclusive=1
output = [0, 1, 3]
exclusive=0
reverse=1
output = [6, 5, 3]
exclusive=1
reverse=1
output = [5, 3, 0]
Attributes
exclusive: If set to 1 will return exclusive sum in which the top element is not included. In other terms, if set to 1, the j-th output element would be the sum of the first (j-1) elements. Otherwise, it would be the sum of the first j elements.
reverse: If set to 1 will perform the sums in reverse direction.
Inputs
x (heterogeneous) - T: An input tensor that is to be processed.
axis (heterogeneous) - T2: A 0-D tensor. Must be in the range [-rank(x), rank(x)-1]. Negative value means counting dimensions from the back.
Outputs
y (heterogeneous) - T: Output tensor of the same type as ‘x’ with cumulative sums of the x’s elements
Type Constraints
T in ( tensor(bfloat16), tensor(double), tensor(float), tensor(float16), tensor(int32), tensor(int64), tensor(uint32), tensor(uint64) ): Constrain input and output types to high-precision numeric tensors.
T2 in ( tensor(int32), tensor(int64) ): axis tensor can be int32 or int64 only
Examples
_cumsum_1d
import numpy as np
import onnx
node = onnx.helper.make_node("CumSum", inputs=["x", "axis"], outputs=["y"])
x = np.array([1.0, 2.0, 3.0, 4.0, 5.0]).astype(np.float64)
axis = np.int32(0)
y = np.array([1.0, 3.0, 6.0, 10.0, 15.0]).astype(np.float64)
expect(node, inputs=[x, axis], outputs=[y], name="test_cumsum_1d")
_cumsum_1d_exclusive
import numpy as np
import onnx
node = onnx.helper.make_node(
"CumSum", inputs=["x", "axis"], outputs=["y"], exclusive=1
)
x = np.array([1.0, 2.0, 3.0, 4.0, 5.0]).astype(np.float64)
axis = np.int32(0)
y = np.array([0.0, 1.0, 3.0, 6.0, 10.0]).astype(np.float64)
expect(node, inputs=[x, axis], outputs=[y], name="test_cumsum_1d_exclusive")
_cumsum_1d_reverse
import numpy as np
import onnx
node = onnx.helper.make_node(
"CumSum", inputs=["x", "axis"], outputs=["y"], reverse=1
)
x = np.array([1.0, 2.0, 3.0, 4.0, 5.0]).astype(np.float64)
axis = np.int32(0)
y = np.array([15.0, 14.0, 12.0, 9.0, 5.0]).astype(np.float64)
expect(node, inputs=[x, axis], outputs=[y], name="test_cumsum_1d_reverse")
_cumsum_1d_reverse_exclusive
import numpy as np
import onnx
node = onnx.helper.make_node(
"CumSum", inputs=["x", "axis"], outputs=["y"], reverse=1, exclusive=1
)
x = np.array([1.0, 2.0, 3.0, 4.0, 5.0]).astype(np.float64)
axis = np.int32(0)
y = np.array([14.0, 12.0, 9.0, 5.0, 0.0]).astype(np.float64)
expect(
node, inputs=[x, axis], outputs=[y], name="test_cumsum_1d_reverse_exclusive"
)
_cumsum_2d_axis_0
import numpy as np
import onnx
node = onnx.helper.make_node(
"CumSum",
inputs=["x", "axis"],
outputs=["y"],
)
x = np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0]).astype(np.float64).reshape((2, 3))
axis = np.int32(0)
y = np.array([1.0, 2.0, 3.0, 5.0, 7.0, 9.0]).astype(np.float64).reshape((2, 3))
expect(node, inputs=[x, axis], outputs=[y], name="test_cumsum_2d_axis_0")
_cumsum_2d_axis_1
import numpy as np
import onnx
node = onnx.helper.make_node(
"CumSum",
inputs=["x", "axis"],
outputs=["y"],
)
x = np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0]).astype(np.float64).reshape((2, 3))
axis = np.int32(1)
y = np.array([1.0, 3.0, 6.0, 4.0, 9.0, 15.0]).astype(np.float64).reshape((2, 3))
expect(node, inputs=[x, axis], outputs=[y], name="test_cumsum_2d_axis_1")
_cumsum_2d_negative_axis
import numpy as np
import onnx
node = onnx.helper.make_node(
"CumSum",
inputs=["x", "axis"],
outputs=["y"],
)
x = np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0]).astype(np.float64).reshape((2, 3))
axis = np.int32(-1)
y = np.array([1.0, 3.0, 6.0, 4.0, 9.0, 15.0]).astype(np.float64).reshape((2, 3))
expect(node, inputs=[x, axis], outputs=[y], name="test_cumsum_2d_negative_axis")
CumSum - 11#
Version
name: CumSum (GitHub)
domain: main
since_version: 11
function: False
support_level: SupportType.COMMON
shape inference: True
This version of the operator has been available since version 11.
Summary
Performs cumulative sum of the input elements along the given axis. By default, it will do the sum inclusively meaning the first element is copied as is. Through an exclusive attribute, this behavior can change to exclude the first element. It can also perform summation in the opposite direction of the axis. For that, set reverse attribute to 1.
Example:
input_x = [1, 2, 3]
axis=0
output = [1, 3, 6]
exclusive=1
output = [0, 1, 3]
exclusive=0
reverse=1
output = [6, 5, 3]
exclusive=1
reverse=1
output = [5, 3, 0]
Attributes
exclusive: If set to 1 will return exclusive sum in which the top element is not included. In other terms, if set to 1, the j-th output element would be the sum of the first (j-1) elements. Otherwise, it would be the sum of the first j elements.
reverse: If set to 1 will perform the sums in reverse direction.
Inputs
x (heterogeneous) - T: An input tensor that is to be processed.
axis (heterogeneous) - T2: A 0-D tensor. Must be in the range [-rank(x), rank(x)-1]. Negative value means counting dimensions from the back.
Outputs
y (heterogeneous) - T: Output tensor of the same type as ‘x’ with cumulative sums of the x’s elements
Type Constraints
T in ( tensor(double), tensor(float), tensor(int32), tensor(int64), tensor(uint32), tensor(uint64) ): Input can be of any tensor type.
T2 in ( tensor(int32), tensor(int64) ): axis tensor can be int32 or int64 only