Reciprocal#
Reciprocal - 13#
Version
name: Reciprocal (GitHub)
domain: main
since_version: 13
function: False
support_level: SupportType.COMMON
shape inference: True
This version of the operator has been available since version 13.
Summary
Reciprocal takes one input data (Tensor<T>) and produces one output data (Tensor<T>) where the reciprocal is, y = 1/x, is applied to the tensor elementwise.
Inputs
X (heterogeneous) - T: Input tensor
Outputs
Y (heterogeneous) - T: Output tensor
Type Constraints
T in ( tensor(bfloat16), tensor(double), tensor(float), tensor(float16) ): Constrain input and output types to float tensors.
Examples
default
import numpy as np
import onnx
node = onnx.helper.make_node(
"Reciprocal",
inputs=["x"],
outputs=["y"],
)
x = np.array([-4, 2]).astype(np.float32)
y = np.reciprocal(x) # expected output [-0.25, 0.5],
expect(node, inputs=[x], outputs=[y], name="test_reciprocal_example")
x = np.random.rand(3, 4, 5).astype(np.float32) + 0.5
y = np.reciprocal(x)
expect(node, inputs=[x], outputs=[y], name="test_reciprocal")
Reciprocal - 6#
Version
name: Reciprocal (GitHub)
domain: main
since_version: 6
function: False
support_level: SupportType.COMMON
shape inference: True
This version of the operator has been available since version 6.
Summary
Reciprocal takes one input data (Tensor<T>) and produces one output data (Tensor<T>) where the reciprocal is, y = 1/x, is applied to the tensor elementwise.
Inputs
X (heterogeneous) - T: Input tensor
Outputs
Y (heterogeneous) - T: Output tensor
Type Constraints
T in ( tensor(double), tensor(float), tensor(float16) ): Constrain input and output types to float tensors.
Reciprocal - 1#
Version
name: Reciprocal (GitHub)
domain: main
since_version: 1
function: False
support_level: SupportType.COMMON
shape inference: False
This version of the operator has been available since version 1.
Summary
Reciprocal takes one input data (Tensor<T>) and produces one output data (Tensor<T>) where the reciprocal is, y = 1/x, is applied to the tensor elementwise.
Attributes
consumed_inputs: legacy optimization attribute.
Inputs
X (heterogeneous) - T: Input tensor
Outputs
Y (heterogeneous) - T: Output tensor
Type Constraints
T in ( tensor(double), tensor(float), tensor(float16) ): Constrain input and output types to float tensors.