Upsample#
Upsample - 10#
Version
name: Upsample (GitHub)
domain: main
since_version: 10
function: False
support_level: SupportType.COMMON
shape inference: True
This version of the operator has been deprecated since version 10.
Summary
Upsample the input tensor. Each dimension value of the output tensor is:
output_dimension = floor(input_dimension * scale).
Attributes
mode: Two interpolation modes: nearest (default), and linear (including bilinear, trilinear, etc)
Inputs
X (heterogeneous) - T: N-D tensor
scales (heterogeneous) - tensor(float): The scale array along each dimension. It takes value greater than or equal to 1. The number of elements of ‘scales’ should be the same as the rank of input ‘X’.
Outputs
Y (heterogeneous) - T: N-D tensor after resizing
Type Constraints
T in ( tensor(bool), tensor(complex128), tensor(complex64), tensor(double), tensor(float), tensor(float16), tensor(int16), tensor(int32), tensor(int64), tensor(int8), tensor(string), tensor(uint16), tensor(uint32), tensor(uint64), tensor(uint8) ): Constrain input ‘X’ and output ‘Y’ to all tensor types.
Examples
_nearest
import numpy as np
import onnx
node = onnx.helper.make_node(
"Upsample",
inputs=["X", "scales"],
outputs=["Y"],
mode="nearest",
)
data = np.array(
[
[
[
[1, 2],
[3, 4],
]
]
],
dtype=np.float32,
)
scales = np.array([1.0, 1.0, 2.0, 3.0], dtype=np.float32)
output = np.array(
[
[
[
[1, 1, 1, 2, 2, 2],
[1, 1, 1, 2, 2, 2],
[3, 3, 3, 4, 4, 4],
[3, 3, 3, 4, 4, 4],
]
]
],
dtype=np.float32,
)
expect(
node,
inputs=[data, scales],
outputs=[output],
name="test_upsample_nearest",
opset_imports=[helper.make_opsetid("", 9)],
)
Upsample - 9#
Version
name: Upsample (GitHub)
domain: main
since_version: 9
function: False
support_level: SupportType.COMMON
shape inference: True
This version of the operator has been available since version 9.
Summary
Upsample the input tensor. Each dimension value of the output tensor is:
output_dimension = floor(input_dimension * scale).
Attributes
mode: Two interpolation modes: nearest (default), and linear (including bilinear, trilinear, etc)
Inputs
X (heterogeneous) - T: N-D tensor
scales (heterogeneous) - tensor(float): The scale array along each dimension. It takes value greater than or equal to 1. The number of elements of ‘scales’ should be the same as the rank of input ‘X’.
Outputs
Y (heterogeneous) - T: N-D tensor after resizing
Type Constraints
T in ( tensor(bool), tensor(complex128), tensor(complex64), tensor(double), tensor(float), tensor(float16), tensor(int16), tensor(int32), tensor(int64), tensor(int8), tensor(string), tensor(uint16), tensor(uint32), tensor(uint64), tensor(uint8) ): Constrain input ‘X’ and output ‘Y’ to all tensor types.
Upsample - 7#
Version
name: Upsample (GitHub)
domain: main
since_version: 7
function: False
support_level: SupportType.COMMON
shape inference: True
This version of the operator has been available since version 7.
Summary
Upsample the input tensor. Each dimension value of the output tensor is:
output_dimension = floor(input_dimension * scale).
Attributes
mode: Two interpolation modes: nearest (default), and linear (including bilinear, trilinear, etc)
scales (required): The scale array along each dimension. It takes value greater than or equal to 1. The number of elements of ‘scales’ should be the same as the rank of input ‘X’.
Inputs
X (heterogeneous) - T: N-D tensor
Outputs
Y (heterogeneous) - T: N-D tensor after resizing
Type Constraints
T in ( tensor(bool), tensor(complex128), tensor(complex64), tensor(double), tensor(float), tensor(float16), tensor(int16), tensor(int32), tensor(int64), tensor(int8), tensor(string), tensor(uint16), tensor(uint32), tensor(uint64), tensor(uint8) ): Constrain input and output types to all tensor types.
Upsample - 1#
Version
name: Upsample (GitHub)
domain: main
since_version: 1
function: False
support_level: SupportType.EXPERIMENTAL
shape inference: False
No versioning maintained for experimental ops.
Summary
Upsample the input tensor. The width and height of the output tensor are:
output_width = floor(input_width * width_scale), output_height = floor(input_height * height_scale).
- Example:
Given data tensor, width_scale, height_scale, mode, Upsample the input 4-D tensor in nearest mode: data = [[[
[1, 2], [3, 4]
]]] width_scale = 2 height_scale = 2 mode = “nearest” output = [[[
[1, 1, 2, 2], [1, 1, 2, 2], [3, 3, 4, 4], [3, 3, 4, 4]
]]]
Attributes
height_scale (required): The scale along height dimension. It takes value greater than or equal to 1.
mode: Two interpolation modes: nearest(default), bilinear
width_scale (required): The scale along width dimension. It takes value greater than or equal to 1.
Inputs
X (heterogeneous) - T: 4-D tensor, [N,C,H,W]
Outputs
Y (heterogeneous) - T: 4-D tensor after resizing, [N,C,H,W]
Type Constraints
T in ( tensor(bool), tensor(double), tensor(float), tensor(float16), tensor(int32), tensor(int64) ): Constrain output types to bool, int32, int64, float16, float, double tensors.