Pow - 13 vs 15#

Next section compares an older to a newer version of the same operator after both definition are converted into markdown text. Green means an addition to the newer version, red means a deletion. Anything else is unchanged.

Files changed (1) hide show
  1. Pow13 → Pow15 +0 -1
Pow13 → Pow15 RENAMED
@@ -1 +1 @@
1
1
  Pow takes input data (Tensor<T>) and exponent Tensor, and
2
2
  produces one output data (Tensor<T>) where the function f(x) = x^exponent,
3
3
  is applied to the data tensor elementwise.
4
4
  This operator supports **multidirectional (i.e., Numpy-style) broadcasting**; for more details please check Broadcasting in ONNX <https://github.com/onnx/onnx/blob/master/docs/Broadcasting.md>_.
5
5
  **Inputs**
6
6
  * **X** (heterogeneous) - **T**:
7
7
  First operand, base of the exponent.
8
8
  * **Y** (heterogeneous) - **T1**:
9
9
  Second operand, power of the exponent.
10
10
  **Outputs**
11
11
  * **Z** (heterogeneous) - **T**:
12
12
  Output tensor
13
13
  **Type Constraints**
14
14
  * **T** in (
15
15
  tensor(bfloat16),
16
16
  tensor(double),
17
17
  tensor(float),
18
18
  tensor(float16),
19
19
  tensor(int32),
20
20
  tensor(int64)
21
21
  ):
22
22
  Constrain input X and output types to float/int tensors.
23
23
  * **T1** in (
24
- tensor(bfloat16),
25
24
  tensor(double),
26
25
  tensor(float),
27
26
  tensor(float16),
28
27
  tensor(int16),
29
28
  tensor(int32),
30
29
  tensor(int64),
31
30
  tensor(int8),
32
31
  tensor(uint16),
33
32
  tensor(uint32),
34
33
  tensor(uint64),
35
34
  tensor(uint8)
36
35
  ):
37
36
  Constrain input Y types to float/int tensors.