Mean#
Mean - 13#
Version
name: Mean (GitHub)
domain: main
since_version: 13
function: False
support_level: SupportType.COMMON
shape inference: True
This version of the operator has been available since version 13.
Summary
Element-wise mean of each of the input tensors (with Numpy-style broadcasting support). All inputs and outputs must have the same data type. This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check Broadcasting in ONNX.
Inputs
Between 1 and 2147483647 inputs.
data_0 (variadic, heterogeneous) - T: List of tensors for mean.
Outputs
mean (heterogeneous) - T: Output tensor.
Type Constraints
T in ( tensor(bfloat16), tensor(double), tensor(float), tensor(float16) ): Constrain input and output types to float tensors.
Examples
default
import numpy as np
import onnx
data_0 = np.array([3, 0, 2]).astype(np.float32)
data_1 = np.array([1, 3, 4]).astype(np.float32)
data_2 = np.array([2, 6, 6]).astype(np.float32)
result = np.array([2, 3, 4]).astype(np.float32)
node = onnx.helper.make_node(
"Mean",
inputs=["data_0", "data_1", "data_2"],
outputs=["result"],
)
expect(
node,
inputs=[data_0, data_1, data_2],
outputs=[result],
name="test_mean_example",
)
node = onnx.helper.make_node(
"Mean",
inputs=["data_0"],
outputs=["result"],
)
expect(node, inputs=[data_0], outputs=[data_0], name="test_mean_one_input")
result = np.divide(np.add(data_0, data_1), 2.0)
node = onnx.helper.make_node(
"Mean",
inputs=["data_0", "data_1"],
outputs=["result"],
)
expect(
node, inputs=[data_0, data_1], outputs=[result], name="test_mean_two_inputs"
)
Mean - 8#
Version
name: Mean (GitHub)
domain: main
since_version: 8
function: False
support_level: SupportType.COMMON
shape inference: True
This version of the operator has been available since version 8.
Summary
Element-wise mean of each of the input tensors (with Numpy-style broadcasting support). All inputs and outputs must have the same data type. This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check Broadcasting in ONNX.
Inputs
Between 1 and 2147483647 inputs.
data_0 (variadic, heterogeneous) - T: List of tensors for mean.
Outputs
mean (heterogeneous) - T: Output tensor.
Type Constraints
T in ( tensor(double), tensor(float), tensor(float16) ): Constrain input and output types to float tensors.
Mean - 6#
Version
name: Mean (GitHub)
domain: main
since_version: 6
function: False
support_level: SupportType.COMMON
shape inference: True
This version of the operator has been available since version 6.
Summary
Element-wise mean of each of the input tensors. All inputs and outputs must have the same shape and data type.
Inputs
Between 1 and 2147483647 inputs.
data_0 (variadic, heterogeneous) - T: List of tensors for Mean.
Outputs
mean (heterogeneous) - T: Output tensor. Same dimension as inputs.
Type Constraints
T in ( tensor(double), tensor(float), tensor(float16) ): Constrain input and output types to float tensors.
Mean - 1#
Version
name: Mean (GitHub)
domain: main
since_version: 1
function: False
support_level: SupportType.COMMON
shape inference: False
This version of the operator has been available since version 1.
Summary
Element-wise mean of each of the input tensors. All inputs and outputs must have the same shape and data type.
Attributes
consumed_inputs: legacy optimization attribute.
Inputs
Between 1 and 2147483647 inputs.
data_0 (variadic, heterogeneous) - T: List of tensors for Mean.
Outputs
mean (heterogeneous) - T: Output tensor. Same dimension as inputs.
Type Constraints
T in ( tensor(double), tensor(float), tensor(float16) ): Constrain input and output types to float tensors.