Sample operator test code#
Many examples from the documentation end by calling
function expect
to check a runtime returns the expected
outputs for the given example. Here is one implementation
based on onnxruntime.
from typing import Any, Sequence
import numpy as np
import onnx
import onnxruntime
def expect(
node: onnx.NodeProto,
inputs: Sequence[np.ndarray],
outputs: Sequence[np.ndarray],
name: str,
**kwargs: Any,
) -> None:
# Builds the model
present_inputs = [x for x in node.input if (x != "")]
present_outputs = [x for x in node.output if (x != "")]
input_type_protos = [None] * len(inputs)
if "input_type_protos" in kwargs:
input_type_protos = kwargs["input_type_protos"]
del kwargs["input_type_protos"]
output_type_protos = [None] * len(outputs)
if "output_type_protos" in kwargs:
output_type_protos = kwargs["output_type_protos"]
del kwargs["output_type_protos"]
inputs_vi = [
_extract_value_info(arr, arr_name, input_type)
for arr, arr_name, input_type in zip(inputs, present_inputs, input_type_protos)
]
outputs_vi = [
_extract_value_info(arr, arr_name, output_type)
for arr, arr_name, output_type in zip(
outputs, present_outputs, output_type_protos
)
]
graph = onnx.helper.make_graph(
nodes=[node], name=name, inputs=inputs_vi, outputs=outputs_vi
)
kwargs["producer_name"] = "backend-test"
if "opset_imports" not in kwargs:
# To make sure the model will be produced with the same opset_version after opset changes
# By default, it uses since_version as opset_version for produced models
produce_opset_version = onnx.defs.get_schema(
node.op_type, node.domain
).since_version
kwargs["opset_imports"] = [
onnx.helper.make_operatorsetid(node.domain, produce_opset_version)
]
model = onnx.helper.make_model_gen_version(graph, **kwargs)
# Checking the produces are the expected ones.
sess = onnxruntime.InferenceSession(model.SerializeToString())
feeds = {name: value for name, value in zip(node.input, inputs)}
results = sess.run(None, feeds)
for expected, output in zip(outputs, results):
assert_allclose(expected, output)