Elu#
Elu - 6#
Version
name: Elu (GitHub)
domain: main
since_version: 6
function: True
support_level: SupportType.COMMON
shape inference: True
This version of the operator has been available since version 6.
Summary
Elu takes one input data (Tensor<T>) and produces one output data (Tensor<T>) where the function f(x) = alpha * (exp(x) - 1.) for x < 0, f(x) = x for x >= 0., is applied to the tensor elementwise.
Attributes
alpha: Coefficient of ELU.
Inputs
X (heterogeneous) - T: 1D input tensor
Outputs
Y (heterogeneous) - T: 1D output tensor
Type Constraints
T in ( tensor(double), tensor(float), tensor(float16) ): Constrain input and output types to float tensors.
Examples
default
import numpy as np
import onnx
node = onnx.helper.make_node("Elu", inputs=["x"], outputs=["y"], alpha=2.0)
x = np.array([-1, 0, 1]).astype(np.float32)
# expected output [-1.2642411, 0., 1.]
y = np.clip(x, 0, np.inf) + (np.exp(np.clip(x, -np.inf, 0)) - 1) * 2.0
expect(node, inputs=[x], outputs=[y], name="test_elu_example")
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.clip(x, 0, np.inf) + (np.exp(np.clip(x, -np.inf, 0)) - 1) * 2.0
expect(node, inputs=[x], outputs=[y], name="test_elu")
_elu_default
import numpy as np
import onnx
default_alpha = 1.0
node = onnx.helper.make_node(
"Elu",
inputs=["x"],
outputs=["y"],
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.clip(x, 0, np.inf) + (np.exp(np.clip(x, -np.inf, 0)) - 1) * default_alpha
expect(node, inputs=[x], outputs=[y], name="test_elu_default")
Elu - 1#
Version
name: Elu (GitHub)
domain: main
since_version: 1
function: False
support_level: SupportType.COMMON
shape inference: False
This version of the operator has been available since version 1.
Summary
Elu takes one input data (Tensor<T>) and produces one output data (Tensor<T>) where the function f(x) = alpha * (exp(x) - 1.) for x < 0, f(x) = x for x >= 0., is applied to the tensor elementwise.
Attributes
alpha: Coefficient of ELU default to 1.0.
consumed_inputs: legacy optimization attribute.
Inputs
X (heterogeneous) - T: 1D input tensor
Outputs
Y (heterogeneous) - T: 1D input tensor
Type Constraints
T in ( tensor(double), tensor(float), tensor(float16) ): Constrain input and output types to float tensors.