Unsqueeze#
Unsqueeze - 13#
Version
name: Unsqueeze (GitHub)
domain: main
since_version: 13
function: False
support_level: SupportType.COMMON
shape inference: True
This version of the operator has been available since version 13.
Summary
Insert single-dimensional entries to the shape of an input tensor (data). Takes one required input axes - which contains a list of dimension indices and this operator will insert a dimension of value 1 into the corresponding index of the output tensor (expanded).
- For example:
Given an input tensor (data) of shape [3, 4, 5], then Unsqueeze(data, axes=[0, 4]) outputs a tensor (expanded) containing same data as data but with shape [1, 3, 4, 5, 1].
The input axes should not contain any duplicate entries. It is an error if it contains duplicates. The rank of the output tensor (output_rank) is the rank of the input tensor (data) plus the number of values in axes. Each value in axes should be within the (inclusive) range [-output_rank , output_rank - 1]. The order of values in axes does not matter and can come in any order.
Inputs
data (heterogeneous) - T: Original tensor
axes (heterogeneous) - tensor(int64): List of integers indicating the dimensions to be inserted. Negative value means counting dimensions from the back. Accepted range is [-r, r-1] where r = rank(expanded).
Outputs
expanded (heterogeneous) - T: Reshaped tensor with same data as input.
Type Constraints
T in ( tensor(bfloat16), tensor(bool), tensor(complex128), tensor(complex64), tensor(double), tensor(float), tensor(float16), tensor(int16), tensor(int32), tensor(int64), tensor(int8), tensor(string), tensor(uint16), tensor(uint32), tensor(uint64), tensor(uint8) ): Constrain input and output types to all tensor types.
Examples
_unsqueeze_one_axis
import numpy as np
import onnx
x = np.random.randn(3, 4, 5).astype(np.float32)
for i in range(x.ndim):
axes = np.array([i]).astype(np.int64)
node = onnx.helper.make_node(
"Unsqueeze",
inputs=["x", "axes"],
outputs=["y"],
)
y = np.expand_dims(x, axis=i)
expect(
node,
inputs=[x, axes],
outputs=[y],
name="test_unsqueeze_axis_" + str(i),
)
_unsqueeze_two_axes
import numpy as np
import onnx
x = np.random.randn(3, 4, 5).astype(np.float32)
axes = np.array([1, 4]).astype(np.int64)
node = onnx.helper.make_node(
"Unsqueeze",
inputs=["x", "axes"],
outputs=["y"],
)
y = np.expand_dims(x, axis=1)
y = np.expand_dims(y, axis=4)
expect(node, inputs=[x, axes], outputs=[y], name="test_unsqueeze_two_axes")
_unsqueeze_three_axes
import numpy as np
import onnx
x = np.random.randn(3, 4, 5).astype(np.float32)
axes = np.array([2, 4, 5]).astype(np.int64)
node = onnx.helper.make_node(
"Unsqueeze",
inputs=["x", "axes"],
outputs=["y"],
)
y = np.expand_dims(x, axis=2)
y = np.expand_dims(y, axis=4)
y = np.expand_dims(y, axis=5)
expect(node, inputs=[x, axes], outputs=[y], name="test_unsqueeze_three_axes")
_unsqueeze_unsorted_axes
import numpy as np
import onnx
x = np.random.randn(3, 4, 5).astype(np.float32)
axes = np.array([5, 4, 2]).astype(np.int64)
node = onnx.helper.make_node(
"Unsqueeze",
inputs=["x", "axes"],
outputs=["y"],
)
y = np.expand_dims(x, axis=2)
y = np.expand_dims(y, axis=4)
y = np.expand_dims(y, axis=5)
expect(node, inputs=[x, axes], outputs=[y], name="test_unsqueeze_unsorted_axes")
_unsqueeze_negative_axes
import numpy as np
import onnx
node = onnx.helper.make_node(
"Unsqueeze",
inputs=["x", "axes"],
outputs=["y"],
)
x = np.random.randn(1, 3, 1, 5).astype(np.float32)
axes = np.array([-2]).astype(np.int64)
y = np.expand_dims(x, axis=-2)
expect(node, inputs=[x, axes], outputs=[y], name="test_unsqueeze_negative_axes")
Unsqueeze - 11#
Version
name: Unsqueeze (GitHub)
domain: main
since_version: 11
function: False
support_level: SupportType.COMMON
shape inference: True
This version of the operator has been available since version 11.
Summary
Insert single-dimensional entries to the shape of an input tensor (data). Takes one required argument axes - which contains a list of dimension indices and this operator will insert a dimension of value 1 into the corresponding index of the output tensor (expanded).
- For example:
Given an input tensor (data) of shape [3, 4, 5], then Unsqueeze(data, axes=[0, 4]) outputs a tensor (expanded) containing same data as data but with shape [1, 3, 4, 5, 1].
The attribute axes should not contain any duplicate entries. It is an error if it contains duplicates. The rank of the output tensor (output_rank) is the rank of the input tensor (data) plus the number of values in axes. Each value in axes should be within the (inclusive) range [-output_rank , output_rank - 1]. The order of values in axes does not matter and can come in any order.
Attributes
axes (required): List of integers indicating the dimensions to be inserted. Negative value means counting dimensions from the back. Accepted range is [-r, r-1] where r = rank(expanded).
Inputs
data (heterogeneous) - T: Original tensor
Outputs
expanded (heterogeneous) - T: Reshaped tensor with same data as input.
Type Constraints
T in ( tensor(bool), tensor(complex128), tensor(complex64), tensor(double), tensor(float), tensor(float16), tensor(int16), tensor(int32), tensor(int64), tensor(int8), tensor(string), tensor(uint16), tensor(uint32), tensor(uint64), tensor(uint8) ): Constrain input and output types to all tensor types.
Unsqueeze - 1#
Version
name: Unsqueeze (GitHub)
domain: main
since_version: 1
function: False
support_level: SupportType.COMMON
shape inference: True
This version of the operator has been available since version 1.
Summary
Insert single-dimensional entries to the shape of a tensor. Takes one required argument axes, a list of dimensions that will be inserted. Dimension indices in axes are as seen in the output tensor. For example:
Given a tensor such that tensor with shape [3, 4, 5], then Unsqueeze(tensor, axes=[0, 4]) has shape [1, 3, 4, 5, 1]
Attributes
axes (required): List of non-negative integers, indicate the dimensions to be inserted
Inputs
data (heterogeneous) - T: Original tensor
Outputs
expanded (heterogeneous) - T: Reshaped tensor with same data as input.
Type Constraints
T in ( tensor(bool), tensor(complex128), tensor(complex64), tensor(double), tensor(float), tensor(float16), tensor(int16), tensor(int32), tensor(int64), tensor(int8), tensor(string), tensor(uint16), tensor(uint32), tensor(uint64), tensor(uint8) ): Constrain input and output types to all tensor types.