Transpose#
Transpose - 13#
Version
name: Transpose (GitHub)
domain: main
since_version: 13
function: False
support_level: SupportType.COMMON
shape inference: True
This version of the operator has been available since version 13.
Summary
Transpose the input tensor similar to numpy.transpose. For example, when perm=(1, 0, 2), given an input tensor of shape (1, 2, 3), the output shape will be (2, 1, 3).
Attributes
perm: A list of integers. By default, reverse the dimensions, otherwise permute the axes according to the values given.
Inputs
data (heterogeneous) - T: An input tensor.
Outputs
transposed (heterogeneous) - T: Transposed output.
Type Constraints
T in ( tensor(bfloat16), tensor(bool), tensor(complex128), tensor(complex64), tensor(double), tensor(float), tensor(float16), tensor(int16), tensor(int32), tensor(int64), tensor(int8), tensor(string), tensor(uint16), tensor(uint32), tensor(uint64), tensor(uint8) ): Constrain input and output types to all tensor types.
Examples
_default
import numpy as np
import onnx
shape = (2, 3, 4)
data = np.random.random_sample(shape).astype(np.float32)
node = onnx.helper.make_node(
"Transpose", inputs=["data"], outputs=["transposed"]
)
transposed = np.transpose(data)
expect(node, inputs=[data], outputs=[transposed], name="test_transpose_default")
_all_permutations
import numpy as np
import onnx
shape = (2, 3, 4)
data = np.random.random_sample(shape).astype(np.float32)
permutations = list(itertools.permutations(np.arange(len(shape))))
for i in range(len(permutations)):
node = onnx.helper.make_node(
"Transpose",
inputs=["data"],
outputs=["transposed"],
perm=permutations[i],
)
transposed = np.transpose(data, permutations[i])
expect(
node,
inputs=[data],
outputs=[transposed],
name="test_transpose_all_permutations_" + str(i),
)
Transpose - 1#
Version
name: Transpose (GitHub)
domain: main
since_version: 1
function: False
support_level: SupportType.COMMON
shape inference: True
This version of the operator has been available since version 1.
Summary
Transpose the input tensor similar to numpy.transpose. For example, when perm=(1, 0, 2), given an input tensor of shape (1, 2, 3), the output shape will be (2, 1, 3).
Attributes
perm: A list of integers. By default, reverse the dimensions, otherwise permute the axes according to the values given.
Inputs
data (heterogeneous) - T: An input tensor.
Outputs
transposed (heterogeneous) - T: Transposed output.
Type Constraints
T in ( tensor(bool), tensor(complex128), tensor(complex64), tensor(double), tensor(float), tensor(float16), tensor(int16), tensor(int32), tensor(int64), tensor(int8), tensor(string), tensor(uint16), tensor(uint32), tensor(uint64), tensor(uint8) ): Constrain input and output types to all tensor types.