TreeEnsembleRegressor - 1 vs 3#

Next section compares an older to a newer version of the same operator after both definition are converted into markdown text. Green means an addition to the newer version, red means a deletion. Anything else is unchanged.

TreeEnsembleRegressor1 → TreeEnsembleRegressor3 RENAMED
@@ -1 +1 @@
1
1
  Tree Ensemble regressor. Returns the regressed values for each input in N.
2
2
  All args with nodes_ are fields of a tuple of tree nodes, and
3
3
  it is assumed they are the same length, and an index i will decode the
4
4
  tuple across these inputs. Each node id can appear only once
5
5
  for each tree id.
6
6
  All fields prefixed with target_ are tuples of votes at the leaves.
7
7
  A leaf may have multiple votes, where each vote is weighted by
8
8
  the associated target_weights index.
9
- All fields ending with <i>_as_tensor</i> can be used instead of the
10
- same parameter without the suffix if the element type is double and not float.
11
9
  All trees must have their node ids start at 0 and increment by 1.
12
10
  Mode enum is BRANCH_LEQ, BRANCH_LT, BRANCH_GTE, BRANCH_GT, BRANCH_EQ, BRANCH_NEQ, LEAF
13
11
  **Attributes**
14
12
  * **aggregate_function**:
15
13
  Defines how to aggregate leaf values within a target. <br>One of
16
14
  'AVERAGE,' 'SUM,' 'MIN,' 'MAX.'
17
15
  * **base_values**:
18
16
  Base values for classification, added to final class score; the size
19
17
  must be the same as the classes or can be left unassigned (assumed
20
18
  0)
21
- * **base_values_as_tensor**:
22
- Base values for classification, added to final class score; the size
23
- must be the same as the classes or can be left unassigned (assumed
24
- 0)
25
19
  * **n_targets**:
26
20
  The total number of targets.
27
21
  * **nodes_falsenodeids**:
28
22
  Child node if expression is false
29
23
  * **nodes_featureids**:
30
24
  Feature id for each node.
31
25
  * **nodes_hitrates**:
32
- Popularity of each node, used for performance and may be omitted.
33
- * **nodes_hitrates_as_tensor**:
34
26
  Popularity of each node, used for performance and may be omitted.
35
27
  * **nodes_missing_value_tracks_true**:
36
28
  For each node, define what to do in the presence of a NaN: use the
37
29
  'true' (if the attribute value is 1) or 'false' (if the attribute
38
30
  value is 0) branch based on the value in this array.<br>This
39
31
  attribute may be left undefined and the defalt value is false (0)
40
32
  for all nodes.
41
33
  * **nodes_modes**:
42
34
  The node kind, that is, the comparison to make at the node. There is
43
35
  no comparison to make at a leaf node.<br>One of 'BRANCH_LEQ',
44
36
  'BRANCH_LT', 'BRANCH_GTE', 'BRANCH_GT', 'BRANCH_EQ', 'BRANCH_NEQ',
45
37
  'LEAF'
46
38
  * **nodes_nodeids**:
47
39
  Node id for each node. Node ids must restart at zero for each tree
48
40
  and increase sequentially.
49
41
  * **nodes_treeids**:
50
42
  Tree id for each node.
51
43
  * **nodes_truenodeids**:
52
44
  Child node if expression is true
53
45
  * **nodes_values**:
54
46
  Thresholds to do the splitting on for each node.
55
- * **nodes_values_as_tensor**:
56
- Thresholds to do the splitting on for each node.
57
47
  * **post_transform**:
58
48
  Indicates the transform to apply to the score. <br>One of 'NONE,'
59
49
  'SOFTMAX,' 'LOGISTIC,' 'SOFTMAX_ZERO,' or 'PROBIT'
60
50
  * **target_ids**:
61
51
  The index of the target that each weight is for
62
52
  * **target_nodeids**:
63
53
  The node id of each weight
64
54
  * **target_treeids**:
65
55
  The id of the tree that each node is in.
66
56
  * **target_weights**:
67
- The weight for each target
68
- * **target_weights_as_tensor**:
69
57
  The weight for each target
70
58
  **Inputs**
71
59
  * **X** (heterogeneous) - **T**:
72
60
  Input of shape [N,F]
73
61
  **Outputs**
74
62
  * **Y** (heterogeneous) - **tensor(float)**:
75
63
  N classes
76
64
  **Type Constraints**
77
65
  * **T** in (
78
66
  tensor(double),
79
67
  tensor(float),
80
68
  tensor(int32),
81
69
  tensor(int64)
82
70
  ):
83
71
  The input type must be a tensor of a numeric type.