Tile - 6 vs 13#

Next section compares an older to a newer version of the same operator after both definition are converted into markdown text. Green means an addition to the newer version, red means a deletion. Anything else is unchanged.

Files changed (1) hide show
  1. Tile6 → Tile13 +0 -1
Tile6 → Tile13 RENAMED
@@ -1 +1 @@
1
1
  Constructs a tensor by tiling a given tensor.
2
2
  This is the same as function tile in Numpy, but no broadcast.
3
3
  For example A = [[1, 2], [3, 4]], B = [1, 2], tile(A, B) = [[1, 2, 1, 2], [3, 4, 3, 4]]
4
4
  **Inputs**
5
5
  * **input** (heterogeneous) - **T**:
6
6
  Input tensor of any shape.
7
7
  * **repeats** (heterogeneous) - **T1**:
8
8
  1D int64 tensor of the same length as input's dimension number,
9
9
  includes numbers of repeated copies along input's dimensions.
10
10
  **Outputs**
11
11
  * **output** (heterogeneous) - **T**:
12
12
  Output tensor of the same dimensions and type as tensor input.
13
13
  output_dim[i] = input_dim[i] * repeats[i]
14
14
  **Type Constraints**
15
15
  * **T** in (
16
- tensor(bfloat16),
17
16
  tensor(bool),
18
17
  tensor(complex128),
19
18
  tensor(complex64),
20
19
  tensor(double),
21
20
  tensor(float),
22
21
  tensor(float16),
23
22
  tensor(int16),
24
23
  tensor(int32),
25
24
  tensor(int64),
26
25
  tensor(int8),
27
26
  tensor(string),
28
27
  tensor(uint16),
29
28
  tensor(uint32),
30
29
  tensor(uint64),
31
30
  tensor(uint8)
32
31
  ):
33
32
  Constrain input and output types to all tensor types.
34
33
  * **T1** in (
35
34
  tensor(int64)
36
35
  ):
37
36
  Constrain repeat's type to int64 tensors.