Shape - 13 vs 15#

Next section compares an older to a newer version of the same operator after both definition are converted into markdown text. Green means an addition to the newer version, red means a deletion. Anything else is unchanged.

Files changed (1) hide show
  1. Shape13 → Shape15 +0 -38
Shape13 → Shape15 RENAMED
@@ -1 +1 @@
1
1
  Takes a tensor as input and outputs an 1D int64 tensor containing the shape of the input tensor.
2
- Optional attributes start and end can be used to compute a slice of the input tensor's shape.
3
- If start axis is omitted, the slice starts from axis 0.
4
- The end axis, if specified, is exclusive (and the returned value will not include the size of that axis).
5
- If the end axis is omitted, the axes upto the last one will be included.
6
- Negative axes indicate counting back from the last axis.
7
- Note that axes will be clamped to the range [0, r-1], where r is the
8
- rank of the input tensor if they are out-of-range (after adding r in the case of
9
- negative axis). Thus, specifying any end value > r is equivalent to specifying an end
10
- value of r, and specifying any start value < -r is equivalent to specifying a start
11
- value of 0.
12
-
13
- For example:
14
- Input tensor with shape: [2, 3, 4]
15
- No attributes specified.
16
- Output: [2, 3, 4]
17
-
18
- Input tensor with shape: [2, 3, 4]
19
- start: -1
20
- Output: [4]
21
-
22
- Input tensor with shape: [2, 3, 4]
23
- end: -1
24
- Output: [2, 3]
25
-
26
- Input tensor with shape: [2, 3, 4]
27
- start: 1
28
- end: 2
29
- Output: [3]
30
-
31
- **Attributes**
32
-
33
- * **end**:
34
- (Optional) Ending axis for slicing the shape. Negative value means
35
- counting dimensions from the back. If omitted, sizes of all axes
36
- upto (including) the last one will be included.
37
- * **start**:
38
- (Optional) Starting axis for slicing the shape. Default value is
39
- 0.Negative value means counting dimensions from the back.
40
2
  **Inputs**
41
3
  * **data** (heterogeneous) - **T**:
42
4
  An input tensor.
43
5
  **Outputs**
44
6
  * **shape** (heterogeneous) - **T1**:
45
7
  Shape of the input tensor
46
8
  **Type Constraints**
47
9
  * **T** in (
48
10
  tensor(bfloat16),
49
11
  tensor(bool),
50
12
  tensor(complex128),
51
13
  tensor(complex64),
52
14
  tensor(double),
53
15
  tensor(float),
54
16
  tensor(float16),
55
17
  tensor(int16),
56
18
  tensor(int32),
57
19
  tensor(int64),
58
20
  tensor(int8),
59
21
  tensor(string),
60
22
  tensor(uint16),
61
23
  tensor(uint32),
62
24
  tensor(uint64),
63
25
  tensor(uint8)
64
26
  ):
65
27
  Input tensor can be of arbitrary type.
66
28
  * **T1** in (
67
29
  tensor(int64)
68
30
  ):
69
31
  Constrain output to int64 tensor.