RNN - 1 vs 14#

Next section compares an older to a newer version of the same operator after both definition are converted into markdown text. Green means an addition to the newer version, red means a deletion. Anything else is unchanged.

Files changed (1) hide show
  1. RNN1 → RNN14 +4 -13
RNN1 → RNN14 RENAMED
@@ -1 +1 @@
1
1
  Computes an one-layer simple RNN. This operator is usually supported
2
2
  via some custom implementation such as CuDNN.
3
3
  Notations:
4
4
  X - input tensor
5
5
  i - input gate
6
6
  t - time step (t-1 means previous time step)
7
7
  Wi - W parameter weight matrix for input gate
8
8
  Ri - R recurrence weight matrix for input gate
9
9
  Wbi - W parameter bias vector for input gate
10
10
  Rbi - R parameter bias vector for input gate
11
11
  WBi - W parameter weight matrix for backward input gate
12
12
  RBi - R recurrence weight matrix for backward input gate
13
13
  WBbi - WR bias vectors for backward input gate
14
14
  RBbi - RR bias vectors for backward input gate
15
15
  H - Hidden state
16
16
  num_directions - 2 if direction == bidirectional else 1
17
17
  Activation functions:
18
18
  Relu(x) - max(0, x)
19
19
  Tanh(x) - (1 - e^{-2x})/(1 + e^{-2x})
20
20
  Sigmoid(x) - 1/(1 + e^{-x})
21
21
  (NOTE: Below are optional)
22
22
  Affine(x) - alpha*x + beta
23
23
  LeakyRelu(x) - x if x >= 0 else alpha * x
24
24
  ThresholdedRelu(x) - x if x >= alpha else 0
25
25
  ScaledTanh(x) - alpha*Tanh(beta*x)
26
26
  HardSigmoid(x) - min(max(alpha*x + beta, 0), 1)
27
27
  Elu(x) - x if x >= 0 else alpha*(e^x - 1)
28
28
  Softsign(x) - x/(1 + |x|)
29
29
  Softplus(x) - log(1 + e^x)
30
30
  Equations (Default: f=Tanh):
31
- - Ht = f(Xt*(Wi^T) + Ht-1*(Ri^T) + Wbi + Rbi)
31
+ - Ht = f(Xt*(Wi^T) + Ht-1*Ri + Wbi + Rbi)
32
- This operator has **optional** inputs/outputs. See ONNX <https://github.com/onnx/onnx/blob/master/docs/IR.md>_ for more details about the representation of optional arguments. An empty string may be used in the place of an actual argument's name to indicate a missing argument. Trailing optional arguments (those not followed by an argument that is present) may also be simply omitted.
33
32
  **Attributes**
34
33
  * **activation_alpha**:
35
34
  Optional scaling values used by some activation functions. The
36
35
  values are consumed in the order of activation functions, for
37
36
  example (f, g, h) in LSTM. Default values are the same as of
38
37
  corresponding ONNX operators.For example with LeakyRelu, the default
39
38
  alpha is 0.01.
40
39
  * **activation_beta**:
41
40
  Optional scaling values used by some activation functions. The
42
41
  values are consumed in the order of activation functions, for
43
42
  example (f, g, h) in LSTM. Default values are the same as of
44
43
  corresponding ONNX operators.
45
44
  * **activations**:
46
45
  One (or two if bidirectional) activation function for input gate.
47
46
  The activation function must be one of the activation functions
48
47
  specified above. Optional: Default Tanh if not specified.
49
48
  * **clip**:
50
49
  Cell clip threshold. Clipping bounds the elements of a tensor in the
51
50
  range of [-threshold, +threshold] and is applied to the input of
52
51
  activations. No clip if not specified.
53
52
  * **direction**:
54
53
  Specify if the RNN is forward, reverse, or bidirectional. Must be
55
54
  one of forward (default), reverse, or bidirectional.
56
55
  * **hidden_size**:
57
56
  Number of neurons in the hidden layer
57
+ * **output_sequence**:
58
+ The sequence output for the hidden is optional if 0. Default 0.
58
- * **layout**:
59
- The shape format of inputs X, initial_h and outputs Y, Y_h. If 0,
60
- the following shapes are expected: X.shape = [seq_length,
61
- batch_size, input_size], Y.shape = [seq_length, num_directions,
62
- batch_size, hidden_size], initial_h.shape = Y_h.shape =
63
- [num_directions, batch_size, hidden_size]. If 1, the following
64
- shapes are expected: X.shape = [batch_size, seq_length, input_size],
65
- Y.shape = [batch_size, seq_length, num_directions, hidden_size],
66
- initial_h.shape = Y_h.shape = [batch_size, num_directions,
67
- hidden_size].
68
59
  **Inputs**
69
60
  Between 3 and 6 inputs.
70
61
  * **X** (heterogeneous) - **T**:
71
62
  The input sequences packed (and potentially padded) into one 3-D
72
63
  tensor with the shape of [seq_length, batch_size, input_size].
73
64
  * **W** (heterogeneous) - **T**:
74
65
  The weight tensor for input gate. Concatenation of Wi and WBi
75
66
  (if bidirectional). The tensor has shape [num_directions,
76
67
  hidden_size, input_size].
77
68
  * **R** (heterogeneous) - **T**:
78
69
  The recurrence weight tensor. Concatenation of Ri and RBi (if
79
70
  bidirectional). The tensor has shape [num_directions, hidden_size,
80
71
  hidden_size].
81
72
  * **B** (optional, heterogeneous) - **T**:
82
73
  The bias tensor for input gate. Concatenation of [Wbi, Rbi] and
83
74
  [WBbi, RBbi] (if bidirectional). The tensor has shape
84
75
  [num_directions, 2*hidden_size]. Optional: If not specified -
85
76
  assumed to be 0.
86
77
  * **sequence_lens** (optional, heterogeneous) - **T1**:
87
78
  Optional tensor specifying lengths of the sequences in a batch. If
88
79
  not specified - assumed all sequences in the batch to have length
89
80
  seq_length. It has shape [batch_size].
90
81
  * **initial_h** (optional, heterogeneous) - **T**:
91
82
  Optional initial value of the hidden. If not specified - assumed to
92
83
  be 0. It has shape [num_directions, batch_size, hidden_size].
93
84
  **Outputs**
94
85
  Between 0 and 2 outputs.
95
86
  * **Y** (optional, heterogeneous) - **T**:
96
87
  A tensor that concats all the intermediate output values of the
97
88
  hidden. It has shape [seq_length, num_directions, batch_size,
98
- hidden_size].
89
+ hidden_size]. It is optional if output_sequence is 0.
99
90
  * **Y_h** (optional, heterogeneous) - **T**:
100
91
  The last output value of the hidden. It has shape [num_directions,
101
92
  batch_size, hidden_size].
102
93
  **Type Constraints**
103
94
  * **T** in (
104
95
  tensor(double),
105
96
  tensor(float),
106
97
  tensor(float16)
107
98
  ):
108
99
  Constrain input and output types to float tensors.
109
100
  * **T1** in (
110
101
  tensor(int32)
111
102
  ):
112
103
  Constrain seq_lens to integer tensor.