PRelu - 7 vs 16#

Next section compares an older to a newer version of the same operator after both definition are converted into markdown text. Green means an addition to the newer version, red means a deletion. Anything else is unchanged.

Files changed (1) hide show
  1. PRelu7 → PRelu16 +2 -10
PRelu7 → PRelu16 RENAMED
@@ -1 +1 @@
1
1
  PRelu takes input data (Tensor<T>) and slope tensor as input, and produces one
2
2
  output data (Tensor<T>) where the function f(x) = slope * x for x < 0,
3
3
  f(x) = x for x >= 0., is applied to the data tensor elementwise.
4
-
5
- **History**
6
- - Version 16 adds bfloat16 to the types allowed.
7
4
  This operator supports **unidirectional broadcasting** (tensor slope should be unidirectional broadcastable to input tensor X); for more details please check Broadcasting in ONNX <https://github.com/onnx/onnx/blob/master/docs/Broadcasting.md>_.
8
5
  **Inputs**
9
6
  * **X** (heterogeneous) - **T**:
10
7
  Input tensor
11
8
  * **slope** (heterogeneous) - **T**:
12
9
  Slope tensor. The shape of slope can be smaller then first input X;
13
10
  if so, its shape must be unidirectional broadcastable to X
14
11
  **Outputs**
15
12
  * **Y** (heterogeneous) - **T**:
16
13
  Output tensor (same size as X)
17
14
  **Type Constraints**
18
15
  * **T** in (
19
- tensor(bfloat16),
20
16
  tensor(double),
21
17
  tensor(float),
22
- tensor(float16),
18
+ tensor(float16)
23
- tensor(int32),
24
- tensor(int64),
25
- tensor(uint32),
26
- tensor(uint64)
27
19
  ):
28
- Constrain input and output types to float/int tensors.? ----
20
+ Constrain input and output types to float tensors.