Loop - 11 vs 13#

Next section compares an older to a newer version of the same operator after both definition are converted into markdown text. Green means an addition to the newer version, red means a deletion. Anything else is unchanged.

Files changed (1) hide show
  1. Loop11 → Loop13 +2 -20
Loop11 → Loop13 RENAMED
@@ -1 +1 @@
1
1
  Generic Looping construct. This loop has multiple termination conditions:
2
2
  1) Trip count. Iteration count specified at runtime. Set by
3
3
  specifying the input M. Optional. Set to empty string to omit.
4
4
  Note that a static trip count (specified at graph construction time) can be
5
5
  specified by passing in a constant node for input M.
6
6
  2) Loop termination condition. This is an input to the op that determines
7
7
  whether to run the first iteration and also a loop-carried dependency for
8
8
  the body graph. The body graph must yield a value for the condition variable,
9
9
  whether this input is provided or not.
10
10
  This table summarizes the operating modes of this operator with equivalent
11
11
  C-style code:
12
12
  Operator inputs defined as (max_trip_count, condition_var).
13
13
  input ("", ""):
14
14
  for (int i=0; ; ++i) {
15
15
  cond = ... // Note this value is ignored, but is required in the body
16
16
  }
17
17
  input ("", cond) // Note this is analogous to a while loop
18
18
  bool cond = ...;
19
19
  for (int i=0; cond; ++i) {
20
20
  cond = ...;
21
21
  }
22
22
  input ("", 1) // Note this is analogous to a do-while loop
23
23
  bool cond = true
24
24
  for (int i=0; cond; ++i) {
25
25
  cond = ...;
26
26
  }
27
27
  input (trip_count, "") // Note this is analogous to a for loop
28
28
  int trip_count = ...
29
29
  for (int i=0; i < trip_count; ++i) {
30
30
  cond = ...; // ignored
31
31
  }
32
32
  input (trip_count, cond)
33
33
  int trip_count = ...;
34
34
  bool cond = ...;
35
35
  for (int i=0; i < trip_count &amp;amp;&amp;amp; cond; ++i) {
36
36
  cond = ...;
37
37
  }
38
38
  *Sample usage - cond as well as trip count*
39
39
  graph predict-net {
40
40
  %a = Constant[value = <Scalar Tensor [3]>]()
41
41
  %b = Constant[value = <Scalar Tensor [6]>]()
42
42
  %keepgoing = Constant[value = <Scalar Tensor [1]>]()
43
43
  %max_trip_count = Constant[value = <Scalar Tensor [10]>]()
44
44
  %keepgoing_out, %b_out, %user_defined_vals = Loop[body = <graph body-net>](%max_trip_count, %keepgoing, %b)
45
45
  return
46
46
  }
47
47
  graph body-net (
48
48
  %i[INT32, scalar] // iteration number
49
49
  %keepgoing_in[BOOL, scalar] // incoming loop-termination-condition; not used
50
50
  %b_in[INT32, scalar] // incoming value of loop-carried-dependency b
51
51
  ) {
52
52
  %my_local = Add(%a, %b_in)
53
53
  %b_out = Sub(%a, %b_in) // outgoing value of loop-carried-dependency b
54
54
  %keepgoing_out = Greater(%my_local, %b_out) // outgoing loop-termination-condition
55
55
  %user_defined_val = Add(%b_in, %b_in) // scan-output value to be accumulated
56
56
  return %keepgoing_out, %b_out, %user_defined_val
57
57
  }
58
58
  *Sample equivalent C code*
59
59
  {
60
60
  /* User-defined code (enclosing scope) */
61
61
  int a = 3, b = 6;
62
62
  bool keepgoing = true; // Analogous to input cond
63
63
  /* End user-defined code */
64
64
  /* Implicitly-defined code */
65
65
  const int max_trip_count = 10; // Analogous to input M
66
66
  int user_defined_vals[]; // Imagine this is resizable
67
67
  /* End implicitly-defined code */
68
68
  /* initialize loop-carried variables and scan-output variables */
69
69
  bool keepgoing_out = keepgoing
70
70
  int b_out = b
71
71
  for (int i=0; i < max_trip_count &amp;amp;&amp;amp; keepgoing_out; ++i) {
72
72
  /* Implicitly-defined code: bind actual parameter values
73
73
  to formal parameter variables of loop-body */
74
74
  bool keepgoing_in = keepgoing_out;
75
75
  bool b_in = b_out;
76
76
  /* User-defined code (loop body) */
77
77
  int my_local = a + b_in; // Reading value "a" from the enclosing scope is fine
78
78
  b_out = a - b_in;
79
79
  keepgoing_out = my_local > b_out;
80
80
  user_defined_val = b_in + b_in; // b_in and b_out are different variables
81
81
  /* End user-defined code */
82
82
  /* Implicitly defined-code */
83
83
  user_defined_vals[i] = user_defined_val // accumulate scan-output values
84
84
  }
85
85
  // int t = my_local; // Can't do this. my_local is not accessible here.
86
86
  // The values below are bound to the output variables of the loop and therefore accessible
87
87
  // b_out; user_defined_vals; keepgoing_out;
88
88
  }
89
89
  There are several things of note in this code snippet:
90
90
  1) Values from the enclosing scope (i.e. variable "a" here) are in scope and can
91
91
  be referenced in the inputs of the loop.
92
92
  2) Any values computed in the loop body that needs to be used in a subsequent
93
93
  iteration or after the loop are modelled using a pair of variables in the loop-body,
94
94
  consisting of an input variable (eg., b_in) and an output variable (eg., b_out).
95
95
  These are referred to as loop-carried dependences. The loop operation node
96
96
  supplies the input value of the input variable for the first iteration, and
97
97
  returns the output value of the output variable produced by the final
98
98
  iteration.
99
99
  3) Scan_output variables are used to implicitly concatenate values computed across
100
100
  all the iterations. In the above example, the value of user_defined_val computed
101
101
  over all iterations are concatenated and returned as the value of user_defined_vals
102
102
  after the loop.
103
103
  4) Values created in the body cannot be accessed in the enclosing scope,
104
104
  except using the mechanism described above.
105
105
  Note that the semantics of this op support "diagonal" or "wavefront" execution.
106
106
  (See Step 3 here for an example:
107
107
  https://devblogs.nvidia.com/optimizing-recurrent-neural-networks-cudnn-5/).
108
108
  Frontends should emit multi-layer RNNs as a series of While operators (with
109
109
  time being the inner looping dimension), with each successive layer consuming
110
110
  the scan_outputs from the previous layer, possibly going through several
111
111
  point-wise operators (e.g. dropout, residual connections, linear layer).
112
- The input/output of subgraph (produced by loop node) matching is based on order instead of name. The implementation will figure out the names based on this order.
113
-
114
112
  **Attributes**
115
113
  * **body** (required):
116
114
  The graph run each iteration. It has 2+N inputs: (iteration_num,
117
115
  condition, loop carried dependencies...). It has 1+N+K outputs:
118
116
  (condition, loop carried dependencies..., scan_outputs...). Each
119
117
  scan_output is created by concatenating the value of the specified
120
118
  output value at the end of each iteration of the loop. It is an
121
119
  error if the dimensions or data type of these scan_outputs change
122
120
  across loop iterations.
123
121
  **Inputs**
124
122
  Between 2 and 2147483647 inputs.
125
123
  * **M** (optional, heterogeneous) - **I**:
126
124
  A maximum trip-count for the loop specified at runtime. Optional.
127
125
  Pass empty string to skip.
128
126
  * **cond** (optional, heterogeneous) - **B**:
129
127
  A boolean termination condition. Optional. Pass empty string to
130
128
  skip.
131
129
  * **v_initial** (variadic) - **V**:
132
130
  The initial values of any loop-carried dependencies (values that
133
131
  change across loop iterations)
134
132
  **Outputs**
135
133
  Between 1 and 2147483647 outputs.
136
134
  * **v_final_and_scan_outputs** (variadic) - **V**:
137
- Final N loop carried dependency values then K scan_outputs. Scan
135
+ Final N loop carried dependency values then K scan_outputs
138
- outputs must be Tensors.
139
136
  **Type Constraints**
140
137
  * **V** in (
141
- seq(tensor(bool)),
142
- seq(tensor(complex128)),
143
- seq(tensor(complex64)),
144
- seq(tensor(double)),
145
- seq(tensor(float)),
146
- seq(tensor(float16)),
147
- seq(tensor(int16)),
148
- seq(tensor(int32)),
149
- seq(tensor(int64)),
150
- seq(tensor(int8)),
151
- seq(tensor(string)),
152
- seq(tensor(uint16)),
153
- seq(tensor(uint32)),
154
- seq(tensor(uint64)),
155
- seq(tensor(uint8)),
156
138
  tensor(bool),
157
139
  tensor(complex128),
158
140
  tensor(complex64),
159
141
  tensor(double),
160
142
  tensor(float),
161
143
  tensor(float16),
162
144
  tensor(int16),
163
145
  tensor(int32),
164
146
  tensor(int64),
165
147
  tensor(int8),
166
148
  tensor(string),
167
149
  tensor(uint16),
168
150
  tensor(uint32),
169
151
  tensor(uint64),
170
152
  tensor(uint8)
171
153
  ):
172
- All Tensor and Sequence types
154
+ All Tensor types
173
155
  * **I** in (
174
156
  tensor(int64)
175
157
  ):
176
158
  tensor of int64, which should be a scalar.
177
159
  * **B** in (
178
160
  tensor(bool)
179
161
  ):
180
162
  tensor of bool, which should be a scalar.