LeakyRelu - 1 vs 6#

Next section compares an older to a newer version of the same operator after both definition are converted into markdown text. Green means an addition to the newer version, red means a deletion. Anything else is unchanged.

Files changed (1) hide show
  1. LeakyRelu1 → LeakyRelu6 +3 -1
LeakyRelu1 → LeakyRelu6 RENAMED
@@ -1 +1 @@
1
1
  LeakyRelu takes input data (Tensor<T>) and an argument alpha, and produces one
2
2
  output data (Tensor<T>) where the function f(x) = alpha * x for x < 0,
3
3
  f(x) = x for x >= 0, is applied to the data tensor elementwise.
4
4
  **Attributes**
5
5
  * **alpha**:
6
- Coefficient of leakage.
6
+ Coefficient of leakage default to 0.01.
7
+ * **consumed_inputs**:
8
+ legacy optimization attribute.
7
9
  **Inputs**
8
10
  * **X** (heterogeneous) - **T**:
9
11
  Input tensor
10
12
  **Outputs**
11
13
  * **Y** (heterogeneous) - **T**:
12
14
  Output tensor
13
15
  **Type Constraints**
14
16
  * **T** in (
15
17
  tensor(double),
16
18
  tensor(float),
17
19
  tensor(float16)
18
20
  ):
19
21
  Constrain input and output types to float tensors.