LSTM - 7 vs 14#

Next section compares an older to a newer version of the same operator after both definition are converted into markdown text. Green means an addition to the newer version, red means a deletion. Anything else is unchanged.

Files changed (1) hide show
  1. LSTM7 → LSTM14 +0 -11
LSTM7 → LSTM14 RENAMED
@@ -1 +1 @@
1
1
  Computes an one-layer LSTM. This operator is usually supported via some
2
2
  custom implementation such as CuDNN.
3
3
  Notations:
4
4
  X - input tensor
5
5
  i - input gate
6
6
  o - output gate
7
7
  f - forget gate
8
8
  c - cell gate
9
9
  t - time step (t-1 means previous time step)
10
10
  W[iofc] - W parameter weight matrix for input, output, forget, and cell gates
11
11
  R[iofc] - R recurrence weight matrix for input, output, forget, and cell gates
12
12
  Wb[iofc] - W bias vectors for input, output, forget, and cell gates
13
13
  Rb[iofc] - R bias vectors for input, output, forget, and cell gates
14
14
  P[iof] - P peephole weight vector for input, output, and forget gates
15
15
  WB[iofc] - W parameter weight matrix for backward input, output, forget, and cell gates
16
16
  RB[iofc] - R recurrence weight matrix for backward input, output, forget, and cell gates
17
17
  WBb[iofc] - W bias vectors for backward input, output, forget, and cell gates
18
18
  RBb[iofc] - R bias vectors for backward input, output, forget, and cell gates
19
19
  PB[iof] - P peephole weight vector for backward input, output, and forget gates
20
20
  H - Hidden state
21
21
  num_directions - 2 if direction == bidirectional else 1
22
22
  Activation functions:
23
23
  Relu(x) - max(0, x)
24
24
  Tanh(x) - (1 - e^{-2x})/(1 + e^{-2x})
25
25
  Sigmoid(x) - 1/(1 + e^{-x})
26
26
  (NOTE: Below are optional)
27
27
  Affine(x) - alpha*x + beta
28
28
  LeakyRelu(x) - x if x >= 0 else alpha * x
29
29
  ThresholdedRelu(x) - x if x >= alpha else 0
30
30
  ScaledTanh(x) - alpha*Tanh(beta*x)
31
31
  HardSigmoid(x) - min(max(alpha*x + beta, 0), 1)
32
32
  Elu(x) - x if x >= 0 else alpha*(e^x - 1)
33
33
  Softsign(x) - x/(1 + |x|)
34
34
  Softplus(x) - log(1 + e^x)
35
35
  Equations (Default: f=Sigmoid, g=Tanh, h=Tanh):
36
36
  - it = f(Xt*(Wi^T) + Ht-1*(Ri^T) + Pi (.) Ct-1 + Wbi + Rbi)
37
37
  - ft = f(Xt*(Wf^T) + Ht-1*(Rf^T) + Pf (.) Ct-1 + Wbf + Rbf)
38
38
  - ct = g(Xt*(Wc^T) + Ht-1*(Rc^T) + Wbc + Rbc)
39
39
  - Ct = ft (.) Ct-1 + it (.) ct
40
40
  - ot = f(Xt*(Wo^T) + Ht-1*(Ro^T) + Po (.) Ct + Wbo + Rbo)
41
41
  - Ht = ot (.) h(Ct)
42
42
  This operator has **optional** inputs/outputs. See ONNX <https://github.com/onnx/onnx/blob/master/docs/IR.md>_ for more details about the representation of optional arguments. An empty string may be used in the place of an actual argument's name to indicate a missing argument. Trailing optional arguments (those not followed by an argument that is present) may also be simply omitted.
43
43
  **Attributes**
44
44
  * **activation_alpha**:
45
45
  Optional scaling values used by some activation functions. The
46
46
  values are consumed in the order of activation functions, for
47
47
  example (f, g, h) in LSTM. Default values are the same as of
48
48
  corresponding ONNX operators.For example with LeakyRelu, the default
49
49
  alpha is 0.01.
50
50
  * **activation_beta**:
51
51
  Optional scaling values used by some activation functions. The
52
52
  values are consumed in the order of activation functions, for
53
53
  example (f, g, h) in LSTM. Default values are the same as of
54
54
  corresponding ONNX operators.
55
55
  * **activations**:
56
56
  A list of 3 (or 6 if bidirectional) activation functions for input,
57
57
  output, forget, cell, and hidden. The activation functions must be
58
58
  one of the activation functions specified above. Optional: See the
59
59
  equations for default if not specified.
60
60
  * **clip**:
61
61
  Cell clip threshold. Clipping bounds the elements of a tensor in the
62
62
  range of [-threshold, +threshold] and is applied to the input of
63
63
  activations. No clip if not specified.
64
64
  * **direction**:
65
65
  Specify if the RNN is forward, reverse, or bidirectional. Must be
66
66
  one of forward (default), reverse, or bidirectional.
67
67
  * **hidden_size**:
68
68
  Number of neurons in the hidden layer
69
69
  * **input_forget**:
70
70
  Couple the input and forget gates if 1.
71
- * **layout**:
72
- The shape format of inputs X, initial_h, initial_c and outputs Y,
73
- Y_h, Y_c. If 0, the following shapes are expected: X.shape =
74
- [seq_length, batch_size, input_size], Y.shape = [seq_length,
75
- num_directions, batch_size, hidden_size], initial_h.shape =
76
- Y_h.shape = initial_c.shape = Y_c.shape = [num_directions,
77
- batch_size, hidden_size]. If 1, the following shapes are expected:
78
- X.shape = [batch_size, seq_length, input_size], Y.shape =
79
- [batch_size, seq_length, num_directions, hidden_size],
80
- initial_h.shape = Y_h.shape = initial_c.shape = Y_c.shape =
81
- [batch_size, num_directions, hidden_size].
82
71
  **Inputs**
83
72
  Between 3 and 8 inputs.
84
73
  * **X** (heterogeneous) - **T**:
85
74
  The input sequences packed (and potentially padded) into one 3-D
86
75
  tensor with the shape of [seq_length, batch_size, input_size].
87
76
  * **W** (heterogeneous) - **T**:
88
77
  The weight tensor for the gates. Concatenation of W[iofc] and
89
78
  WB[iofc] (if bidirectional) along dimension 0. The tensor has
90
79
  shape [num_directions, 4*hidden_size, input_size].
91
80
  * **R** (heterogeneous) - **T**:
92
81
  The recurrence weight tensor. Concatenation of R[iofc] and
93
82
  RB[iofc] (if bidirectional) along dimension 0. This tensor has
94
83
  shape [num_directions, 4*hidden_size, hidden_size].
95
84
  * **B** (optional, heterogeneous) - **T**:
96
85
  The bias tensor for input gate. Concatenation of [Wb[iofc],
97
86
  Rb[iofc]], and [WBb[iofc], RBb[iofc]] (if bidirectional) along
98
87
  dimension 0. This tensor has shape [num_directions,
99
88
  8*hidden_size]. Optional: If not specified - assumed to be 0.
100
89
  * **sequence_lens** (optional, heterogeneous) - **T1**:
101
90
  Optional tensor specifying lengths of the sequences in a batch. If
102
91
  not specified - assumed all sequences in the batch to have length
103
92
  seq_length. It has shape [batch_size].
104
93
  * **initial_h** (optional, heterogeneous) - **T**:
105
94
  Optional initial value of the hidden. If not specified - assumed to
106
95
  be 0. It has shape [num_directions, batch_size, hidden_size].
107
96
  * **initial_c** (optional, heterogeneous) - **T**:
108
97
  Optional initial value of the cell. If not specified - assumed to be
109
98
  0. It has shape [num_directions, batch_size, hidden_size].
110
99
  * **P** (optional, heterogeneous) - **T**:
111
100
  The weight tensor for peepholes. Concatenation of P[iof] and
112
101
  PB[iof] (if bidirectional) along dimension 0. It has shape
113
102
  [num_directions, 3*hidde_size]. Optional: If not specified -
114
103
  assumed to be 0.
115
104
  **Outputs**
116
105
  Between 0 and 3 outputs.
117
106
  * **Y** (optional, heterogeneous) - **T**:
118
107
  A tensor that concats all the intermediate output values of the
119
108
  hidden. It has shape [seq_length, num_directions, batch_size,
120
109
  hidden_size].
121
110
  * **Y_h** (optional, heterogeneous) - **T**:
122
111
  The last output value of the hidden. It has shape [num_directions,
123
112
  batch_size, hidden_size].
124
113
  * **Y_c** (optional, heterogeneous) - **T**:
125
114
  The last output value of the cell. It has shape [num_directions,
126
115
  batch_size, hidden_size].
127
116
  **Type Constraints**
128
117
  * **T** in (
129
118
  tensor(double),
130
119
  tensor(float),
131
120
  tensor(float16)
132
121
  ):
133
122
  Constrain input and output types to float tensors.
134
123
  * **T1** in (
135
124
  tensor(int32)
136
125
  ):
137
126
  Constrain seq_lens to integer tensor.