Gemm - 1 vs 6#

Next section compares an older to a newer version of the same operator after both definition are converted into markdown text. Green means an addition to the newer version, red means a deletion. Anything else is unchanged.

Files changed (1) hide show
  1. Gemm1 → Gemm6 +1 -1
Gemm1 → Gemm6 RENAMED
@@ -1 +1 @@
1
1
  General Matrix multiplication:
2
2
  https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms#Level_3
3
3
  Compute Y = alpha * A * B + beta * C, where input tensor A has
4
4
  dimension (M X K), input tensor B has dimension (K X N), input tensor C and
5
5
  output tensor Y have dimension (M X N).
6
6
  If attribute broadcast is non-zero, input tensor C will be broadcasted to match
7
7
  the dimension requirement. A will be transposed before doing the computation
8
8
  if attribute transA is non-zero, same for B and transB.
9
9
  **Attributes**
10
10
  * **alpha**:
11
11
  Scalar multiplier for the product of input tensors A * B, the
12
12
  default value is 1.0.
13
13
  * **beta**:
14
14
  Scalar multiplier for input tensor C, the default value is 1.0.
15
15
  * **broadcast**:
16
16
  Whether C should be broadcasted
17
17
  * **transA**:
18
18
  Whether A should be transposed
19
19
  * **transB**:
20
20
  Whether B should be transposed
21
21
  **Inputs**
22
22
  * **A** (heterogeneous) - **T**:
23
23
  Input tensor A
24
24
  * **B** (heterogeneous) - **T**:
25
25
  Input tensor B
26
26
  * **C** (heterogeneous) - **T**:
27
- Input tensor C
27
+ Input tensor C, can be inplace.
28
28
  **Outputs**
29
29
  * **Y** (heterogeneous) - **T**:
30
30
  Output tensor.
31
31
  **Type Constraints**
32
32
  * **T** in (
33
33
  tensor(double),
34
34
  tensor(float),
35
35
  tensor(float16)
36
36
  ):
37
37
  Constrain input and output types to float tensors.