Dropout - 1 vs 6#

Next section compares an older to a newer version of the same operator after both definition are converted into markdown text. Green means an addition to the newer version, red means a deletion. Anything else is unchanged.

Files changed (1) hide show
  1. Dropout1 → Dropout6 +2 -0
Dropout1 → Dropout6 RENAMED
@@ -1 +1 @@
1
1
  Dropout takes one input data (Tensor<float>) and produces two Tensor outputs,
2
2
  output (Tensor<float>) and mask (Tensor<bool>). Depending on whether it is in
3
3
  test mode or not, the output Y will either be a random dropout, or a simple
4
4
  copy of the input. Note that our implementation of Dropout does scaling in
5
5
  the training phase, so during testing nothing needs to be done.
6
6
  **Attributes**
7
+ * **consumed_inputs**:
8
+ legacy optimization attribute.
7
9
  * **is_test**:
8
10
  (int, default 0) if nonzero, run dropout in test mode where the
9
11
  output is simply Y = X.
10
12
  * **ratio**:
11
13
  (float, default 0.5) the ratio of random dropout
12
14
  **Inputs**
13
15
  * **data** (heterogeneous) - **T**:
14
16
  The input data as Tensor.
15
17
  **Outputs**
16
18
  Between 1 and 2 outputs.
17
19
  * **output** (heterogeneous) - **T**:
18
20
  The output.
19
21
  * **mask** (optional, heterogeneous) - **T**:
20
22
  The output mask. If is_test is nonzero, this output is not filled.
21
23
  **Type Constraints**
22
24
  * **T** in (
23
25
  tensor(double),
24
26
  tensor(float),
25
27
  tensor(float16)
26
28
  ):
27
29
  Constrain input and output types to float tensors.