Slice - 10 vs 11¶
- Slice10 → Slice11 +9 -5
Slice10 → Slice11
RENAMED
@@ -1 +1 @@
|
|
1
1
|
Produces a slice of the input tensor along multiple axes. Similar to numpy:
|
2
2
|
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
|
3
3
|
Slices uses starts, ends, axes and steps inputs to specify the start and end
|
4
4
|
dimension and step for each axis in the list of axes, it uses this information to
|
5
5
|
slice the input data tensor. If a negative value is passed for any of the
|
6
|
-
start or end indices, it
|
6
|
+
start or end indices, it represents number of elements before the end of that
|
7
7
|
dimension. If the value passed to start or end is larger than the n (the
|
8
8
|
number of elements in this dimension), it represents n. For slicing to the
|
9
|
-
end of a dimension with unknown size, it is recommended to pass in INT_MAX
|
9
|
+
end of a dimension with unknown size, it is recommended to pass in INT_MAX
|
10
|
+
when slicing forward and 'INT_MIN' when slicing backward.
|
10
11
|
If a negative value is passed for step, it represents slicing backward.
|
12
|
+
However step value cannot be 0.
|
11
13
|
If axes are omitted, they are set to [0, ..., ndim-1].
|
12
14
|
If steps are omitted, they are set to [1, ..., 1] of length len(starts)
|
13
15
|
Example 1:
|
14
16
|
data = [
|
15
17
|
[1, 2, 3, 4],
|
16
18
|
[5, 6, 7, 8],
|
17
19
|
]
|
18
20
|
axes = [0, 1]
|
19
21
|
starts = [1, 0]
|
20
22
|
ends = [2, 3]
|
21
23
|
steps = [1, 2]
|
22
24
|
result = [
|
23
25
|
[5, 7],
|
24
26
|
]
|
25
27
|
Example 2:
|
26
28
|
data = [
|
27
29
|
[1, 2, 3, 4],
|
28
30
|
[5, 6, 7, 8],
|
29
31
|
]
|
30
32
|
starts = [0, 1]
|
31
33
|
ends = [-1, 1000]
|
32
34
|
result = [
|
33
35
|
[2, 3, 4],
|
34
36
|
]
|
35
37
|
**Inputs**
|
36
38
|
Between 3 and 5 inputs.
|
37
39
|
* **data** (heterogeneous) - **T**:
|
38
40
|
Tensor of data to extract slices from.
|
39
41
|
* **starts** (heterogeneous) - **Tind**:
|
40
42
|
1-D tensor of starting indices of corresponding axis in axes
|
41
43
|
* **ends** (heterogeneous) - **Tind**:
|
42
44
|
1-D tensor of ending indices (exclusive) of corresponding axis in
|
43
45
|
axes
|
44
46
|
* **axes** (optional, heterogeneous) - **Tind**:
|
45
|
-
1-D tensor of axes that starts and ends apply to.
|
47
|
+
1-D tensor of axes that starts and ends apply to. Negative value
|
48
|
+
means counting dimensions from the back. Accepted range is [-r, r-1]
|
49
|
+
where r = rank(data).
|
46
50
|
* **steps** (optional, heterogeneous) - **Tind**:
|
47
|
-
1-D tensor of slice step of corresponding axis in axes.
|
51
|
+
1-D tensor of slice step of corresponding axis in axes. Negative
|
48
|
-
1.
|
52
|
+
value means slicing backward. 'steps' cannot be 0. Defaults to 1.
|
49
53
|
**Outputs**
|
50
54
|
* **output** (heterogeneous) - **T**:
|
51
55
|
Sliced data tensor.
|
52
56
|
**Type Constraints**
|
53
57
|
* **T** in (
|
54
58
|
tensor(bool),
|
55
59
|
tensor(complex128),
|
56
60
|
tensor(complex64),
|
57
61
|
tensor(double),
|
58
62
|
tensor(float),
|
59
63
|
tensor(float16),
|
60
64
|
tensor(int16),
|
61
65
|
tensor(int32),
|
62
66
|
tensor(int64),
|
63
67
|
tensor(int8),
|
64
68
|
tensor(string),
|
65
69
|
tensor(uint16),
|
66
70
|
tensor(uint32),
|
67
71
|
tensor(uint64),
|
68
72
|
tensor(uint8)
|
69
73
|
):
|
70
74
|
Constrain input and output types to all tensor types.
|
71
75
|
* **Tind** in (
|
72
76
|
tensor(int32),
|
73
77
|
tensor(int64)
|
74
78
|
):
|
75
79
|
Constrain indices to integer types
|