ConstantOfShape¶
ConstantOfShape - 9¶
Version
name: ConstantOfShape (GitHub)
domain: main
since_version: 9
function: False
support_level: SupportType.COMMON
shape inference: True
This version of the operator has been available since version 9.
Summary
Generate a tensor with given value and shape.
Attributes
value: (Optional) The value of the output elements.Should be a one-element tensor. If not specified, it defaults to a tensor of value 0 and datatype float32
Inputs
input (heterogeneous) - T1: 1D tensor. The shape of the expected output tensor. If empty tensor is given, the output would be a scalar. All values must be >= 0.
Outputs
output (heterogeneous) - T2: Output tensor of shape specified by ‘input’.If attribute ‘value’ is specified, the value and datatype of the output tensor is taken from ‘value’.If attribute ‘value’ is not specified, the value in the output defaults to 0, and the datatype defaults to float32.
Type Constraints
T1 in ( tensor(int64) ): Constrain input types.
T2 in ( tensor(bool), tensor(double), tensor(float), tensor(float16), tensor(int16), tensor(int32), tensor(int64), tensor(int8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(uint8) ): Constrain output types to be numerics.
Examples
_float_ones
import numpy as np
import onnx
x = np.array([4, 3, 2]).astype(np.int64)
tensor_value = onnx.helper.make_tensor(
"value", onnx.TensorProto.FLOAT, [1], [1]
)
node = onnx.helper.make_node(
"ConstantOfShape",
inputs=["x"],
outputs=["y"],
value=tensor_value,
)
y = np.ones(x, dtype=np.float32)
expect(node, inputs=[x], outputs=[y], name="test_constantofshape_float_ones")
_int32_zeros
import numpy as np
import onnx
x = np.array([10, 6]).astype(np.int64)
tensor_value = onnx.helper.make_tensor(
"value", onnx.TensorProto.INT32, [1], [0]
)
node = onnx.helper.make_node(
"ConstantOfShape",
inputs=["x"],
outputs=["y"],
value=tensor_value,
)
y = np.zeros(x, dtype=np.int32)
expect(node, inputs=[x], outputs=[y], name="test_constantofshape_int_zeros")
_int32_shape_zero
import numpy as np
import onnx
x = np.array(
[
0,
]
).astype(np.int64)
tensor_value = onnx.helper.make_tensor(
"value", onnx.TensorProto.INT32, [1], [0]
)
node = onnx.helper.make_node(
"ConstantOfShape",
inputs=["x"],
outputs=["y"],
value=tensor_value,
)
y = np.zeros(x, dtype=np.int32)
expect(
node, inputs=[x], outputs=[y], name="test_constantofshape_int_shape_zero"
)