DequantizeLinear¶
DequantizeLinear - 13¶
Version
domain: main
since_version: 13
function: False
support_level: SupportType.COMMON
shape inference: True
This version of the operator has been available since version 13.
Summary
The linear dequantization operator. It consumes a quantized tensor, a scale, and a zero point to compute the full precision tensor. The dequantization formula is y = (x - x_zero_point) * x_scale. ‘x_scale’ and ‘x_zero_point’ must have same shape, and can be either a scalar for per-tensor / per layer quantization, or a 1-D tensor for per-axis quantization. ‘x_zero_point’ and ‘x’ must have same type. ‘x’ and ‘y’ must have same shape. In the case of dequantizing int32, there’s no zero point (zero point is supposed to be 0).
Attributes
axis: (Optional) The axis of the dequantizing dimension of the input tensor. Ignored for per-tensor quantization. Negative value means counting dimensions from the back. Accepted range is [-r, r-1] where r = rank(input).
Inputs
Between 2 and 3 inputs.
x (heterogeneous) - T: N-D quantized input tensor to be de-quantized.
x_scale (heterogeneous) - tensor(float): Scale for input ‘x’. It can be a scalar, which means a per- tensor/layer dequantization, or a 1-D tensor for per-axis dequantization.
x_zero_point (optional, heterogeneous) - T: Zero point for input ‘x’. Shape must match x_scale. It’s optional. Zero point is 0 when it’s not specified.
Outputs
y (heterogeneous) - tensor(float): N-D full precision output tensor. It has same shape as input ‘x’.
Type Constraints
T in ( tensor(int32), tensor(int8), tensor(uint8) ): Constrain ‘x_zero_point’ and ‘x’ to 8-bit/32-bit integer tensor.
Examples
default
import numpy as np
import onnx
node = onnx.helper.make_node(
"DequantizeLinear",
inputs=["x", "x_scale", "x_zero_point"],
outputs=["y"],
)
# scalar zero point and scale
x = np.array([0, 3, 128, 255]).astype(np.uint8)
x_scale = np.float32(2)
x_zero_point = np.uint8(128)
y = np.array([-256, -250, 0, 254], dtype=np.float32)
expect(
node,
inputs=[x, x_scale, x_zero_point],
outputs=[y],
name="test_dequantizelinear",
)
_axis
import numpy as np
import onnx
node = onnx.helper.make_node(
"DequantizeLinear",
inputs=["x", "x_scale", "x_zero_point"],
outputs=["y"],
)
# 1-D tensor zero point and scale of size equal to axis 1 of the input tensor
x = np.array(
[
[
[[3, 89], [34, 200], [74, 59]],
[[5, 24], [24, 87], [32, 13]],
[[245, 99], [4, 142], [121, 102]],
],
],
dtype=np.uint8,
)
x_scale = np.array([2, 4, 5], dtype=np.float32)
x_zero_point = np.array([84, 24, 196], dtype=np.uint8)
y = (
x.astype(np.float32) - x_zero_point.reshape(1, 3, 1, 1).astype(np.float32)
) * x_scale.reshape(1, 3, 1, 1)
expect(
node,
inputs=[x, x_scale, x_zero_point],
outputs=[y],
name="test_dequantizelinear_axis",
)
DequantizeLinear - 10¶
Version
domain: main
since_version: 10
function: False
support_level: SupportType.COMMON
shape inference: True
This version of the operator has been available since version 10.
Summary
The linear dequantization operator. It consumes a quantized tensor, a scale, a zero point to compute the full precision tensor. The dequantization formula is y = (x - x_zero_point) * x_scale. ‘x_scale’ and ‘x_zero_point’ are both scalars. ‘x_zero_point’ and ‘x’ must have same type. ‘x’ and ‘y’ must have same shape. In the case of dequantizing int32, there’s no zero point (zero point is supposed to be 0).
Inputs
Between 2 and 3 inputs.
x (heterogeneous) - T: N-D quantized input tensor to be de-quantized.
x_scale (heterogeneous) - tensor(float): Scale for input ‘x’. It’s a scalar, which means a per-tensor/layer quantization.
x_zero_point (optional, heterogeneous) - T: Zero point for input ‘x’. It’s a scalar, which means a per- tensor/layer quantization. It’s optional. 0 is the default value when it’s not specified.
Outputs
y (heterogeneous) - tensor(float): N-D full precision output tensor. It has same shape as input ‘x’.
Type Constraints
T in ( tensor(int32), tensor(int8), tensor(uint8) ): Constrain ‘x_zero_point’ and ‘x’ to 8-bit/32-bit integer tensor.