Clip

Clip - 13

Version

  • name: Clip (GitHub)

  • domain: main

  • since_version: 13

  • function: False

  • support_level: SupportType.COMMON

  • shape inference: True

This version of the operator has been available since version 13.

Summary

Clip operator limits the given input within an interval. The interval is specified by the inputs ‘min’ and ‘max’. They default to numeric_limits::lowest() and numeric_limits::max(), respectively.

Inputs

Between 1 and 3 inputs.

  • input (heterogeneous) - T: Input tensor whose elements to be clipped

  • min (optional, heterogeneous) - T: Minimum value, under which element is replaced by min. It must be a scalar(tensor of empty shape).

  • max (optional, heterogeneous) - T: Maximum value, above which element is replaced by max. It must be a scalar(tensor of empty shape).

Outputs

  • output (heterogeneous) - T: Output tensor with clipped input elements

Type Constraints

  • T in ( tensor(bfloat16), tensor(double), tensor(float), tensor(float16), tensor(int16), tensor(int32), tensor(int64), tensor(int8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(uint8) ): Constrain input and output types to all numeric tensors.

Examples

default

import numpy as np
import onnx

node = onnx.helper.make_node(
    "Clip",
    inputs=["x", "min", "max"],
    outputs=["y"],
)

x = np.array([-2, 0, 2]).astype(np.float32)
min_val = np.float32(-1)
max_val = np.float32(1)
y = np.clip(x, min_val, max_val)  # expected output [-1., 0., 1.]
expect(
    node, inputs=[x, min_val, max_val], outputs=[y], name="test_clip_example"
)

x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.clip(x, min_val, max_val)
expect(node, inputs=[x, min_val, max_val], outputs=[y], name="test_clip")
node = onnx.helper.make_node(
    "Clip",
    inputs=["x", "min", "max"],
    outputs=["y"],
)

min_val = np.float32(-5)
max_val = np.float32(5)

x = np.array([-1, 0, 1]).astype(np.float32)
y = np.array([-1, 0, 1]).astype(np.float32)
expect(
    node, inputs=[x, min_val, max_val], outputs=[y], name="test_clip_inbounds"
)

x = np.array([-6, 0, 6]).astype(np.float32)
y = np.array([-5, 0, 5]).astype(np.float32)
expect(
    node, inputs=[x, min_val, max_val], outputs=[y], name="test_clip_outbounds"
)

x = np.array([-1, 0, 6]).astype(np.float32)
y = np.array([-1, 0, 5]).astype(np.float32)
expect(
    node,
    inputs=[x, min_val, max_val],
    outputs=[y],
    name="test_clip_splitbounds",
)

_clip_default

import numpy as np
import onnx

node = onnx.helper.make_node(
    "Clip",
    inputs=["x", "min"],
    outputs=["y"],
)
min_val = np.float32(0)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.clip(x, min_val, np.inf)
expect(node, inputs=[x, min_val], outputs=[y], name="test_clip_default_min")

no_min = ""  # optional input, not supplied
node = onnx.helper.make_node(
    "Clip",
    inputs=["x", no_min, "max"],
    outputs=["y"],
)
max_val = np.float32(0)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.clip(x, -np.inf, max_val)
expect(node, inputs=[x, max_val], outputs=[y], name="test_clip_default_max")

no_max = ""  # optional input, not supplied
node = onnx.helper.make_node(
    "Clip",
    inputs=["x", no_min, no_max],
    outputs=["y"],
)

x = np.array([-1, 0, 1]).astype(np.float32)
y = np.array([-1, 0, 1]).astype(np.float32)
expect(node, inputs=[x], outputs=[y], name="test_clip_default_inbounds")

_clip_default_int8

import numpy as np
import onnx

node = onnx.helper.make_node(
    "Clip",
    inputs=["x", "min"],
    outputs=["y"],
)
min_val = np.int8(0)
x = np.random.randn(3, 4, 5).astype(np.int8)
y = np.clip(x, min_val, np.iinfo(np.int8).max)
expect(
    node, inputs=[x, min_val], outputs=[y], name="test_clip_default_int8_min"
)

no_min = ""  # optional input, not supplied
node = onnx.helper.make_node(
    "Clip",
    inputs=["x", no_min, "max"],
    outputs=["y"],
)
max_val = np.int8(0)
x = np.random.randn(3, 4, 5).astype(np.int8)
y = np.clip(x, np.iinfo(np.int8).min, max_val)
expect(
    node, inputs=[x, max_val], outputs=[y], name="test_clip_default_int8_max"
)

no_max = ""  # optional input, not supplied
node = onnx.helper.make_node(
    "Clip",
    inputs=["x", no_min, no_max],
    outputs=["y"],
)

x = np.array([-1, 0, 1]).astype(np.int8)
y = np.array([-1, 0, 1]).astype(np.int8)
expect(node, inputs=[x], outputs=[y], name="test_clip_default_int8_inbounds")

Clip - 12

Version

  • name: Clip (GitHub)

  • domain: main

  • since_version: 12

  • function: False

  • support_level: SupportType.COMMON

  • shape inference: True

This version of the operator has been available since version 12.

Summary

Clip operator limits the given input within an interval. The interval is specified by the inputs ‘min’ and ‘max’. They default to numeric_limits::lowest() and numeric_limits::max(), respectively.

Inputs

Between 1 and 3 inputs.

  • input (heterogeneous) - T: Input tensor whose elements to be clipped

  • min (optional, heterogeneous) - T: Minimum value, under which element is replaced by min. It must be a scalar(tensor of empty shape).

  • max (optional, heterogeneous) - T: Maximum value, above which element is replaced by max. It must be a scalar(tensor of empty shape).

Outputs

  • output (heterogeneous) - T: Output tensor with clipped input elements

Type Constraints

  • T in ( tensor(double), tensor(float), tensor(float16), tensor(int16), tensor(int32), tensor(int64), tensor(int8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(uint8) ): Constrain input and output types to all numeric tensors.

Clip - 11

Version

  • name: Clip (GitHub)

  • domain: main

  • since_version: 11

  • function: False

  • support_level: SupportType.COMMON

  • shape inference: True

This version of the operator has been available since version 11.

Summary

Clip operator limits the given input within an interval. The interval is specified by the inputs ‘min’ and ‘max’. They default to numeric_limits::lowest() and numeric_limits::max(), respectively.

Inputs

Between 1 and 3 inputs.

  • input (heterogeneous) - T: Input tensor whose elements to be clipped

  • min (optional, heterogeneous) - T: Minimum value, under which element is replaced by min. It must be a scalar(tensor of empty shape).

  • max (optional, heterogeneous) - T: Maximum value, above which element is replaced by max. It must be a scalar(tensor of empty shape).

Outputs

  • output (heterogeneous) - T: Output tensor with clipped input elements

Type Constraints

  • T in ( tensor(double), tensor(float), tensor(float16) ): Constrain input and output types to float tensors.

Clip - 6

Version

  • name: Clip (GitHub)

  • domain: main

  • since_version: 6

  • function: False

  • support_level: SupportType.COMMON

  • shape inference: True

This version of the operator has been available since version 6.

Summary

Clip operator limits the given input within an interval. The interval is specified with arguments ‘min’ and ‘max’. They default to numeric_limits::lowest() and numeric_limits::max() respectively.

Attributes

  • max: Maximum value, above which element is replaced by max

  • min: Minimum value, under which element is replaced by min

Inputs

  • input (heterogeneous) - T: Input tensor whose elements to be clipped

Outputs

  • output (heterogeneous) - T: Output tensor with clipped input elements

Type Constraints

  • T in ( tensor(double), tensor(float), tensor(float16) ): Constrain input and output types to float tensors.

Clip - 1

Version

  • name: Clip (GitHub)

  • domain: main

  • since_version: 1

  • function: False

  • support_level: SupportType.COMMON

  • shape inference: False

This version of the operator has been available since version 1.

Summary

Clip operator limits the given input within an interval. The interval is specified with arguments ‘min’ and ‘max’. They default to numeric_limits::lowest() and numeric_limits::max() respectively.

Attributes

  • consumed_inputs: legacy optimization attribute.

  • max: Maximum value, above which element is replaced by max

  • min: Minimum value, under which element is replaced by min

Inputs

  • input (heterogeneous) - T: Input tensor whose elements to be clipped

Outputs

  • output (heterogeneous) - T: Output tensor with clipped input elements

Type Constraints

  • T in ( tensor(double), tensor(float), tensor(float16) ): Constrain input and output types to float tensors.