Gemm

Gemm - 13

Version

  • name: Gemm (GitHub)

  • domain: main

  • since_version: 13

  • function: False

  • support_level: SupportType.COMMON

  • shape inference: True

This version of the operator has been available since version 13.

Summary

General Matrix multiplication: https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms#Level_3

A’ = transpose(A) if transA else A

B’ = transpose(B) if transB else B

Compute Y = alpha * A’ * B’ + beta * C, where input tensor A has shape (M, K) or (K, M), input tensor B has shape (K, N) or (N, K), input tensor C is broadcastable to shape (M, N), and output tensor Y has shape (M, N). A will be transposed before doing the computation if attribute transA is non-zero, same for B and transB. This operator supports unidirectional broadcasting (tensor C should be unidirectional broadcastable to tensor A * B); for more details please check Broadcasting in ONNX. This operator has optional inputs/outputs. See ONNX for more details about the representation of optional arguments. An empty string may be used in the place of an actual argument’s name to indicate a missing argument. Trailing optional arguments (those not followed by an argument that is present) may also be simply omitted.

Attributes

  • alpha: Scalar multiplier for the product of input tensors A * B.

  • beta: Scalar multiplier for input tensor C.

  • transA: Whether A should be transposed

  • transB: Whether B should be transposed

Inputs

Between 2 and 3 inputs.

  • A (heterogeneous) - T: Input tensor A. The shape of A should be (M, K) if transA is 0, or (K, M) if transA is non-zero.

  • B (heterogeneous) - T: Input tensor B. The shape of B should be (K, N) if transB is 0, or (N, K) if transB is non-zero.

  • C (optional, heterogeneous) - T: Optional input tensor C. If not specified, the computation is done as if C is a scalar 0. The shape of C should be unidirectional broadcastable to (M, N).

Outputs

  • Y (heterogeneous) - T: Output tensor of shape (M, N).

Type Constraints

  • T in ( tensor(bfloat16), tensor(double), tensor(float), tensor(float16), tensor(int32), tensor(int64), tensor(uint32), tensor(uint64) ): Constrain input and output types to float/int tensors.

Examples

_default_zero_bias

import numpy as np
import onnx

node = onnx.helper.make_node("Gemm", inputs=["a", "b", "c"], outputs=["y"])
a = np.random.ranf([3, 5]).astype(np.float32)
b = np.random.ranf([5, 4]).astype(np.float32)
c = np.zeros([1, 4]).astype(np.float32)
y = gemm_reference_implementation(a, b, c)
expect(node, inputs=[a, b, c], outputs=[y], name="test_gemm_default_zero_bias")

_default_no_bias

import numpy as np
import onnx

node = onnx.helper.make_node("Gemm", inputs=["a", "b"], outputs=["y"])
a = np.random.ranf([2, 10]).astype(np.float32)
b = np.random.ranf([10, 3]).astype(np.float32)
y = gemm_reference_implementation(a, b)
expect(node, inputs=[a, b], outputs=[y], name="test_gemm_default_no_bias")

_default_scalar_bias

import numpy as np
import onnx

node = onnx.helper.make_node("Gemm", inputs=["a", "b", "c"], outputs=["y"])
a = np.random.ranf([2, 3]).astype(np.float32)
b = np.random.ranf([3, 4]).astype(np.float32)
c = np.array(3.14).astype(np.float32)
y = gemm_reference_implementation(a, b, c)
expect(
    node, inputs=[a, b, c], outputs=[y], name="test_gemm_default_scalar_bias"
)

_default_single_elem_vector_bias

import numpy as np
import onnx

node = onnx.helper.make_node("Gemm", inputs=["a", "b", "c"], outputs=["y"])
a = np.random.ranf([3, 7]).astype(np.float32)
b = np.random.ranf([7, 3]).astype(np.float32)
c = np.random.ranf([1]).astype(np.float32)
y = gemm_reference_implementation(a, b, c)
expect(
    node,
    inputs=[a, b, c],
    outputs=[y],
    name="test_gemm_default_single_elem_vector_bias",
)

_default_vector_bias

import numpy as np
import onnx

node = onnx.helper.make_node("Gemm", inputs=["a", "b", "c"], outputs=["y"])
a = np.random.ranf([2, 7]).astype(np.float32)
b = np.random.ranf([7, 4]).astype(np.float32)
c = np.random.ranf([1, 4]).astype(np.float32)
y = gemm_reference_implementation(a, b, c)
expect(
    node, inputs=[a, b, c], outputs=[y], name="test_gemm_default_vector_bias"
)

_default_matrix_bias

import numpy as np
import onnx

node = onnx.helper.make_node("Gemm", inputs=["a", "b", "c"], outputs=["y"])
a = np.random.ranf([3, 6]).astype(np.float32)
b = np.random.ranf([6, 4]).astype(np.float32)
c = np.random.ranf([3, 4]).astype(np.float32)
y = gemm_reference_implementation(a, b, c)
expect(
    node, inputs=[a, b, c], outputs=[y], name="test_gemm_default_matrix_bias"
)

_transposeA

import numpy as np
import onnx

node = onnx.helper.make_node(
    "Gemm", inputs=["a", "b", "c"], outputs=["y"], transA=1
)
a = np.random.ranf([6, 3]).astype(np.float32)
b = np.random.ranf([6, 4]).astype(np.float32)
c = np.zeros([1, 4]).astype(np.float32)
y = gemm_reference_implementation(a, b, c, transA=1)
expect(node, inputs=[a, b, c], outputs=[y], name="test_gemm_transposeA")

_transposeB

import numpy as np
import onnx

node = onnx.helper.make_node(
    "Gemm", inputs=["a", "b", "c"], outputs=["y"], transB=1
)
a = np.random.ranf([3, 6]).astype(np.float32)
b = np.random.ranf([4, 6]).astype(np.float32)
c = np.zeros([1, 4]).astype(np.float32)
y = gemm_reference_implementation(a, b, c, transB=1)
expect(node, inputs=[a, b, c], outputs=[y], name="test_gemm_transposeB")

_alpha

import numpy as np
import onnx

node = onnx.helper.make_node(
    "Gemm", inputs=["a", "b", "c"], outputs=["y"], alpha=0.5
)
a = np.random.ranf([3, 5]).astype(np.float32)
b = np.random.ranf([5, 4]).astype(np.float32)
c = np.zeros([1, 4]).astype(np.float32)
y = gemm_reference_implementation(a, b, c, alpha=0.5)
expect(node, inputs=[a, b, c], outputs=[y], name="test_gemm_alpha")

_beta

import numpy as np
import onnx

node = onnx.helper.make_node(
    "Gemm", inputs=["a", "b", "c"], outputs=["y"], beta=0.5
)
a = np.random.ranf([2, 7]).astype(np.float32)
b = np.random.ranf([7, 4]).astype(np.float32)
c = np.random.ranf([1, 4]).astype(np.float32)
y = gemm_reference_implementation(a, b, c, beta=0.5)
expect(node, inputs=[a, b, c], outputs=[y], name="test_gemm_beta")

_all_attributes

import numpy as np
import onnx

node = onnx.helper.make_node(
    "Gemm",
    inputs=["a", "b", "c"],
    outputs=["y"],
    alpha=0.25,
    beta=0.35,
    transA=1,
    transB=1,
)
a = np.random.ranf([4, 3]).astype(np.float32)
b = np.random.ranf([5, 4]).astype(np.float32)
c = np.random.ranf([1, 5]).astype(np.float32)
y = gemm_reference_implementation(
    a, b, c, transA=1, transB=1, alpha=0.25, beta=0.35
)
expect(node, inputs=[a, b, c], outputs=[y], name="test_gemm_all_attributes")

Gemm - 11

Version

  • name: Gemm (GitHub)

  • domain: main

  • since_version: 11

  • function: False

  • support_level: SupportType.COMMON

  • shape inference: True

This version of the operator has been available since version 11.

Summary

General Matrix multiplication: https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms#Level_3

A’ = transpose(A) if transA else A

B’ = transpose(B) if transB else B

Compute Y = alpha * A’ * B’ + beta * C, where input tensor A has shape (M, K) or (K, M), input tensor B has shape (K, N) or (N, K), input tensor C is broadcastable to shape (M, N), and output tensor Y has shape (M, N). A will be transposed before doing the computation if attribute transA is non-zero, same for B and transB. This operator supports unidirectional broadcasting (tensor C should be unidirectional broadcastable to tensor A * B); for more details please check Broadcasting in ONNX. This operator has optional inputs/outputs. See ONNX for more details about the representation of optional arguments. An empty string may be used in the place of an actual argument’s name to indicate a missing argument. Trailing optional arguments (those not followed by an argument that is present) may also be simply omitted.

Attributes

  • alpha: Scalar multiplier for the product of input tensors A * B.

  • beta: Scalar multiplier for input tensor C.

  • transA: Whether A should be transposed

  • transB: Whether B should be transposed

Inputs

Between 2 and 3 inputs.

  • A (heterogeneous) - T: Input tensor A. The shape of A should be (M, K) if transA is 0, or (K, M) if transA is non-zero.

  • B (heterogeneous) - T: Input tensor B. The shape of B should be (K, N) if transB is 0, or (N, K) if transB is non-zero.

  • C (optional, heterogeneous) - T: Optional input tensor C. If not specified, the computation is done as if C is a scalar 0. The shape of C should be unidirectional broadcastable to (M, N).

Outputs

  • Y (heterogeneous) - T: Output tensor of shape (M, N).

Type Constraints

  • T in ( tensor(double), tensor(float), tensor(float16), tensor(int32), tensor(int64), tensor(uint32), tensor(uint64) ): Constrain input and output types to float/int tensors.

Gemm - 9

Version

  • name: Gemm (GitHub)

  • domain: main

  • since_version: 9

  • function: False

  • support_level: SupportType.COMMON

  • shape inference: True

This version of the operator has been available since version 9.

Summary

General Matrix multiplication: https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms#Level_3

A’ = transpose(A) if transA else A

B’ = transpose(B) if transB else B

Compute Y = alpha * A’ * B’ + beta * C, where input tensor A has shape (M, K) or (K, M), input tensor B has shape (K, N) or (N, K), input tensor C is broadcastable to shape (M, N), and output tensor Y has shape (M, N). A will be transposed before doing the computation if attribute transA is non-zero, same for B and transB. This operator supports unidirectional broadcasting (tensor C should be unidirectional broadcastable to tensor A * B); for more details please check Broadcasting in ONNX.

Attributes

  • alpha: Scalar multiplier for the product of input tensors A * B.

  • beta: Scalar multiplier for input tensor C.

  • transA: Whether A should be transposed

  • transB: Whether B should be transposed

Inputs

  • A (heterogeneous) - T: Input tensor A. The shape of A should be (M, K) if transA is 0, or (K, M) if transA is non-zero.

  • B (heterogeneous) - T: Input tensor B. The shape of B should be (K, N) if transB is 0, or (N, K) if transB is non-zero.

  • C (heterogeneous) - T: Input tensor C. The shape of C should be unidirectional broadcastable to (M, N).

Outputs

  • Y (heterogeneous) - T: Output tensor of shape (M, N).

Type Constraints

  • T in ( tensor(double), tensor(float), tensor(float16), tensor(int32), tensor(int64), tensor(uint32), tensor(uint64) ): Constrain input and output types to float/int tensors.

Gemm - 7

Version

  • name: Gemm (GitHub)

  • domain: main

  • since_version: 7

  • function: False

  • support_level: SupportType.COMMON

  • shape inference: True

This version of the operator has been available since version 7.

Summary

General Matrix multiplication: https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms#Level_3

A’ = transpose(A) if transA else A

B’ = transpose(B) if transB else B

Compute Y = alpha * A’ * B’ + beta * C, where input tensor A has shape (M, K) or (K, M), input tensor B has shape (K, N) or (N, K), input tensor C is broadcastable to shape (M, N), and output tensor Y has shape (M, N). A will be transposed before doing the computation if attribute transA is non-zero, same for B and transB. This operator supports unidirectional broadcasting (tensor C should be unidirectional broadcastable to tensor A * B); for more details please check Broadcasting in ONNX.

Attributes

  • alpha: Scalar multiplier for the product of input tensors A * B.

  • beta: Scalar multiplier for input tensor C.

  • transA: Whether A should be transposed

  • transB: Whether B should be transposed

Inputs

  • A (heterogeneous) - T: Input tensor A. The shape of A should be (M, K) if transA is 0, or (K, M) if transA is non-zero.

  • B (heterogeneous) - T: Input tensor B. The shape of B should be (K, N) if transB is 0, or (N, K) if transB is non-zero.

  • C (heterogeneous) - T: Input tensor C. The shape of C should be unidirectional broadcastable to (M, N).

Outputs

  • Y (heterogeneous) - T: Output tensor of shape (M, N).

Type Constraints

  • T in ( tensor(double), tensor(float), tensor(float16) ): Constrain input and output types to float tensors.

Gemm - 6

Version

  • name: Gemm (GitHub)

  • domain: main

  • since_version: 6

  • function: False

  • support_level: SupportType.COMMON

  • shape inference: True

This version of the operator has been available since version 6.

Summary

General Matrix multiplication: https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms#Level_3 Compute Y = alpha * A * B + beta * C, where input tensor A has dimension (M X K), input tensor B has dimension (K X N), input tensor C and output tensor Y have dimension (M X N). If attribute broadcast is non-zero, input tensor C will be broadcasted to match the dimension requirement. A will be transposed before doing the computation if attribute transA is non-zero, same for B and transB.

Attributes

  • alpha: Scalar multiplier for the product of input tensors A * B, the default value is 1.0.

  • beta: Scalar multiplier for input tensor C, the default value is 1.0.

  • broadcast: Whether C should be broadcasted

  • transA: Whether A should be transposed

  • transB: Whether B should be transposed

Inputs

  • A (heterogeneous) - T: Input tensor A

  • B (heterogeneous) - T: Input tensor B

  • C (heterogeneous) - T: Input tensor C

Outputs

  • Y (heterogeneous) - T: Output tensor.

Type Constraints

  • T in ( tensor(double), tensor(float), tensor(float16) ): Constrain input and output types to float tensors.

Gemm - 1

Version

  • name: Gemm (GitHub)

  • domain: main

  • since_version: 1

  • function: False

  • support_level: SupportType.COMMON

  • shape inference: False

This version of the operator has been available since version 1.

Summary

General Matrix multiplication: https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms#Level_3 Compute Y = alpha * A * B + beta * C, where input tensor A has dimension (M X K), input tensor B has dimension (K X N), input tensor C and output tensor Y have dimension (M X N). If attribute broadcast is non-zero, input tensor C will be broadcasted to match the dimension requirement. A will be transposed before doing the computation if attribute transA is non-zero, same for B and transB.

Attributes

  • alpha: Scalar multiplier for the product of input tensors A * B, the default value is 1.0.

  • beta: Scalar multiplier for input tensor C, the default value is 1.0.

  • broadcast: Whether C should be broadcasted

  • transA: Whether A should be transposed

  • transB: Whether B should be transposed

Inputs

  • A (heterogeneous) - T: Input tensor A

  • B (heterogeneous) - T: Input tensor B

  • C (heterogeneous) - T: Input tensor C, can be inplace.

Outputs

  • Y (heterogeneous) - T: Output tensor.

Type Constraints

  • T in ( tensor(double), tensor(float), tensor(float16) ): Constrain input and output types to float tensors.