And¶
And - 7¶
Version
name: And (GitHub)
domain: main
since_version: 7
function: False
support_level: SupportType.COMMON
shape inference: True
This version of the operator has been available since version 7.
Summary
Returns the tensor resulted from performing the and logical operation elementwise on the input tensors A and B (with Numpy-style broadcasting support).
This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check Broadcasting in ONNX.
Inputs
A (heterogeneous) - T: First input operand for the logical operator.
B (heterogeneous) - T: Second input operand for the logical operator.
Outputs
C (heterogeneous) - T1: Result tensor.
Type Constraints
T in ( tensor(bool) ): Constrain input to boolean tensor.
T1 in ( tensor(bool) ): Constrain output to boolean tensor.
Examples
default
import numpy as np
import onnx
node = onnx.helper.make_node(
"And",
inputs=["x", "y"],
outputs=["and"],
)
# 2d
x = (np.random.randn(3, 4) > 0).astype(bool)
y = (np.random.randn(3, 4) > 0).astype(bool)
z = np.logical_and(x, y)
expect(node, inputs=[x, y], outputs=[z], name="test_and2d")
# 3d
x = (np.random.randn(3, 4, 5) > 0).astype(bool)
y = (np.random.randn(3, 4, 5) > 0).astype(bool)
z = np.logical_and(x, y)
expect(node, inputs=[x, y], outputs=[z], name="test_and3d")
# 4d
x = (np.random.randn(3, 4, 5, 6) > 0).astype(bool)
y = (np.random.randn(3, 4, 5, 6) > 0).astype(bool)
z = np.logical_and(x, y)
expect(node, inputs=[x, y], outputs=[z], name="test_and4d")
_and_broadcast
import numpy as np
import onnx
node = onnx.helper.make_node(
"And",
inputs=["x", "y"],
outputs=["and"],
)
# 3d vs 1d
x = (np.random.randn(3, 4, 5) > 0).astype(bool)
y = (np.random.randn(5) > 0).astype(bool)
z = np.logical_and(x, y)
expect(node, inputs=[x, y], outputs=[z], name="test_and_bcast3v1d")
# 3d vs 2d
x = (np.random.randn(3, 4, 5) > 0).astype(bool)
y = (np.random.randn(4, 5) > 0).astype(bool)
z = np.logical_and(x, y)
expect(node, inputs=[x, y], outputs=[z], name="test_and_bcast3v2d")
# 4d vs 2d
x = (np.random.randn(3, 4, 5, 6) > 0).astype(bool)
y = (np.random.randn(5, 6) > 0).astype(bool)
z = np.logical_and(x, y)
expect(node, inputs=[x, y], outputs=[z], name="test_and_bcast4v2d")
# 4d vs 3d
x = (np.random.randn(3, 4, 5, 6) > 0).astype(bool)
y = (np.random.randn(4, 5, 6) > 0).astype(bool)
z = np.logical_and(x, y)
expect(node, inputs=[x, y], outputs=[z], name="test_and_bcast4v3d")
# 4d vs 4d
x = (np.random.randn(1, 4, 1, 6) > 0).astype(bool)
y = (np.random.randn(3, 1, 5, 6) > 0).astype(bool)
z = np.logical_and(x, y)
expect(node, inputs=[x, y], outputs=[z], name="test_and_bcast4v4d")
And - 1¶
Version
name: And (GitHub)
domain: main
since_version: 1
function: False
support_level: SupportType.COMMON
shape inference: True
This version of the operator has been available since version 1.
Summary
Returns the tensor resulted from performing the and logical operation elementwise on the input tensors A and B.
If broadcasting is enabled, the right-hand-side argument will be broadcasted to match the shape of left-hand-side argument. See the doc of Add for a detailed description of the broadcasting rules.
Attributes
axis: If set, defines the broadcast dimensions.
broadcast: Enable broadcasting
Inputs
A (heterogeneous) - T: Left input tensor for the logical operator.
B (heterogeneous) - T: Right input tensor for the logical operator.
Outputs
C (heterogeneous) - T1: Result tensor.
Type Constraints
T in ( tensor(bool) ): Constrain input to boolean tensor.
T1 in ( tensor(bool) ): Constrain output to boolean tensor.