HardSigmoid

HardSigmoid - 6

Version

  • name: HardSigmoid (GitHub)

  • domain: main

  • since_version: 6

  • function: True

  • support_level: SupportType.COMMON

  • shape inference: True

This version of the operator has been available since version 6.

Summary

HardSigmoid takes one input data (Tensor<T>) and produces one output data (Tensor<T>) where the HardSigmoid function, y = max(0, min(1, alpha * x + beta)), is applied to the tensor elementwise.

Attributes

  • alpha: Value of alpha.

  • beta: Value of beta.

Inputs

  • X (heterogeneous) - T: Input tensor

Outputs

  • Y (heterogeneous) - T: Output tensor

Type Constraints

  • T in ( tensor(double), tensor(float), tensor(float16) ): Constrain input and output types to float tensors.

Examples

default

import numpy as np
import onnx

node = onnx.helper.make_node(
    "HardSigmoid", inputs=["x"], outputs=["y"], alpha=0.5, beta=0.6
)

x = np.array([-1, 0, 1]).astype(np.float32)
y = np.clip(x * 0.5 + 0.6, 0, 1)  # expected output [0.1, 0.6, 1.]
expect(node, inputs=[x], outputs=[y], name="test_hardsigmoid_example")

x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.clip(x * 0.5 + 0.6, 0, 1)
expect(node, inputs=[x], outputs=[y], name="test_hardsigmoid")

_hardsigmoid_default

import numpy as np
import onnx

default_alpha = 0.2
default_beta = 0.5
node = onnx.helper.make_node(
    "HardSigmoid",
    inputs=["x"],
    outputs=["y"],
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.clip(x * default_alpha + default_beta, 0, 1)
expect(node, inputs=[x], outputs=[y], name="test_hardsigmoid_default")

HardSigmoid - 1

Version

  • name: HardSigmoid (GitHub)

  • domain: main

  • since_version: 1

  • function: False

  • support_level: SupportType.COMMON

  • shape inference: False

This version of the operator has been available since version 1.

Summary

HardSigmoid takes one input data (Tensor<T>) and produces one output data (Tensor<T>) where the HardSigmoid function, y = max(0, min(1, alpha * x + beta)), is applied to the tensor elementwise.

Attributes

  • alpha: Value of alpha default to 0.2

  • beta: Value of beta default to 0.5

  • consumed_inputs: legacy optimization attribute.

Inputs

  • X (heterogeneous) - T: Input tensor

Outputs

  • Y (heterogeneous) - T: Output tensor

Type Constraints

  • T in ( tensor(double), tensor(float), tensor(float16) ): Constrain input and output types to float tensors.