Gather

Gather - 13

Version

  • name: Gather (GitHub)

  • domain: main

  • since_version: 13

  • function: False

  • support_level: SupportType.COMMON

  • shape inference: True

This version of the operator has been available since version 13.

Summary

Given data tensor of rank r >= 1, and indices tensor of rank q, gather entries of the axis dimension of data (by default outer-most one as axis=0) indexed by indices, and concatenates them in an output tensor of rank q + (r - 1).

axis = 0 :

Let k = indices[i_{0}, …, i_{q-1}] Then output[i_{0}, …, i_{q-1}, j_{0}, …, j_{r-2}] = input[k , j_{0}, …, j_{r-2}]

data = [
    [1.0, 1.2],
    [2.3, 3.4],
    [4.5, 5.7],
]
indices = [
    [0, 1],
    [1, 2],
]
output = [
    [
        [1.0, 1.2],
        [2.3, 3.4],
    ],
    [
        [2.3, 3.4],
        [4.5, 5.7],
    ],
]

axis = 1 :

Let k = indices[i_{0}, …, i_{q-1}] Then output[j_{0}, i_{0}, …, i_{q-1}, j_{1}, …, j_{r-2}] = input[j_{0}, k, j_{1}, …, j_{r-2}]

data = [
    [1.0, 1.2, 1.9],
    [2.3, 3.4, 3.9],
    [4.5, 5.7, 5.9],
]
indices = [
    [0, 2],
]
axis = 1,
output = [
        [[1.0, 1.9]],
        [[2.3, 3.9]],
        [[4.5, 5.9]],
]

Attributes

  • axis: Which axis to gather on. Negative value means counting dimensions from the back. Accepted range is [-r, r-1] where r = rank(data).

Inputs

  • data (heterogeneous) - T: Tensor of rank r >= 1.

  • indices (heterogeneous) - Tind: Tensor of int32/int64 indices, of any rank q. All index values are expected to be within bounds [-s, s-1] along axis of size s. It is an error if any of the index values are out of bounds.

Outputs

  • output (heterogeneous) - T: Tensor of rank q + (r - 1).

Type Constraints

  • T in ( tensor(bfloat16), tensor(bool), tensor(complex128), tensor(complex64), tensor(double), tensor(float), tensor(float16), tensor(int16), tensor(int32), tensor(int64), tensor(int8), tensor(string), tensor(uint16), tensor(uint32), tensor(uint64), tensor(uint8) ): Constrain input and output types to any tensor type.

  • Tind in ( tensor(int32), tensor(int64) ): Constrain indices to integer types

Examples

_gather_0

import numpy as np
import onnx

node = onnx.helper.make_node(
    "Gather",
    inputs=["data", "indices"],
    outputs=["y"],
    axis=0,
)
data = np.random.randn(5, 4, 3, 2).astype(np.float32)
indices = np.array([0, 1, 3])
y = np.take(data, indices, axis=0)

expect(
    node,
    inputs=[data, indices.astype(np.int64)],
    outputs=[y],
    name="test_gather_0",
)

_gather_1

import numpy as np
import onnx

node = onnx.helper.make_node(
    "Gather",
    inputs=["data", "indices"],
    outputs=["y"],
    axis=1,
)
data = np.random.randn(5, 4, 3, 2).astype(np.float32)
indices = np.array([0, 1, 3])
y = np.take(data, indices, axis=1)

expect(
    node,
    inputs=[data, indices.astype(np.int64)],
    outputs=[y],
    name="test_gather_1",
)

_gather_2d_indices

import numpy as np
import onnx

node = onnx.helper.make_node(
    "Gather",
    inputs=["data", "indices"],
    outputs=["y"],
    axis=1,
)
data = np.random.randn(3, 3).astype(np.float32)
indices = np.array([[0, 2]])
y = np.take(data, indices, axis=1)

expect(
    node,
    inputs=[data, indices.astype(np.int64)],
    outputs=[y],
    name="test_gather_2d_indices",
)

_gather_negative_indices

import numpy as np
import onnx

node = onnx.helper.make_node(
    "Gather",
    inputs=["data", "indices"],
    outputs=["y"],
    axis=0,
)
data = np.arange(10).astype(np.float32)
indices = np.array([0, -9, -10])
y = np.take(data, indices, axis=0)

# print(y)
# [0. 1. 0.]

expect(
    node,
    inputs=[data, indices.astype(np.int64)],
    outputs=[y],
    name="test_gather_negative_indices",
)

Gather - 11

Version

  • name: Gather (GitHub)

  • domain: main

  • since_version: 11

  • function: False

  • support_level: SupportType.COMMON

  • shape inference: True

This version of the operator has been available since version 11.

Summary

Given data tensor of rank r >= 1, and indices tensor of rank q, gather entries of the axis dimension of data (by default outer-most one as axis=0) indexed by indices, and concatenates them in an output tensor of rank q + (r - 1).

axis = 0 :

Let k = indices[i_{0}, …, i_{q-1}] Then output[i_{0}, …, i_{q-1}, j_{0}, …, j_{r-2}] = input[k , j_{0}, …, j_{r-2}]

data = [
    [1.0, 1.2],
    [2.3, 3.4],
    [4.5, 5.7],
]
indices = [
    [0, 1],
    [1, 2],
]
output = [
    [
        [1.0, 1.2],
        [2.3, 3.4],
    ],
    [
        [2.3, 3.4],
        [4.5, 5.7],
    ],
]

axis = 1 :

Let k = indices[i_{0}, …, i_{q-1}] Then output[i_{0}, …, i_{q-1}, j_{0}, …, j_{r-2}] = input[j_{0}, k, j_{1}, …, j_{r-2}]

data = [
    [1.0, 1.2, 1.9],
    [2.3, 3.4, 3.9],
    [4.5, 5.7, 5.9],
]
indices = [
    [0, 2],
]
axis = 1,
output = [
    [
        [1.0, 1.9],
        [2.3, 3.9],
        [4.5, 5.9],
    ],
]

Attributes

  • axis: Which axis to gather on. Negative value means counting dimensions from the back. Accepted range is [-r, r-1] where r = rank(data).

Inputs

  • data (heterogeneous) - T: Tensor of rank r >= 1.

  • indices (heterogeneous) - Tind: Tensor of int32/int64 indices, of any rank q. All index values are expected to be within bounds [-s, s-1] along axis of size s. It is an error if any of the index values are out of bounds.

Outputs

  • output (heterogeneous) - T: Tensor of rank q + (r - 1).

Type Constraints

  • T in ( tensor(bool), tensor(complex128), tensor(complex64), tensor(double), tensor(float), tensor(float16), tensor(int16), tensor(int32), tensor(int64), tensor(int8), tensor(string), tensor(uint16), tensor(uint32), tensor(uint64), tensor(uint8) ): Constrain input and output types to any tensor type.

  • Tind in ( tensor(int32), tensor(int64) ): Constrain indices to integer types

Gather - 1

Version

  • name: Gather (GitHub)

  • domain: main

  • since_version: 1

  • function: False

  • support_level: SupportType.COMMON

  • shape inference: True

This version of the operator has been available since version 1.

Summary

Given data tensor of rank r >= 1, and indices tensor of rank q, gather entries of the axis dimension of data (by default outer-most one as axis=0) indexed by indices, and concatenates them in an output tensor of rank q + (r - 1). Example 1:

data = [
    [1.0, 1.2],
    [2.3, 3.4],
    [4.5, 5.7],
]
indices = [
    [0, 1],
    [1, 2],
]
output = [
    [
        [1.0, 1.2],
        [2.3, 3.4],
    ],
    [
        [2.3, 3.4],
        [4.5, 5.7],
    ],
]

Example 2:

data = [
    [1.0, 1.2, 1.9],
    [2.3, 3.4, 3.9],
    [4.5, 5.7, 5.9],
]
indices = [
    [0, 2],
]
axis = 1,
output = [
    [
        [1.0, 1.9],
        [2.3, 3.9],
        [4.5, 5.9],
    ],
]

Attributes

  • axis: Which axis to gather on. Negative value means counting dimensions from the back. Accepted range is [-r, r-1]

Inputs

  • data (heterogeneous) - T: Tensor of rank r >= 1.

  • indices (heterogeneous) - Tind: Tensor of int32/int64 indices, of any rank q. All index values are expected to be within bounds. It is an error if any of the index values are out of bounds.

Outputs

  • output (heterogeneous) - T: Tensor of rank q + (r - 1).

Type Constraints

  • T in ( tensor(bool), tensor(complex128), tensor(complex64), tensor(double), tensor(float), tensor(float16), tensor(int16), tensor(int32), tensor(int64), tensor(int8), tensor(string), tensor(uint16), tensor(uint32), tensor(uint64), tensor(uint8) ): Constrain input and output types to any tensor type.

  • Tind in ( tensor(int32), tensor(int64) ): Constrain indices to integer types