Neg¶
Neg - 13¶
Version
name: Neg (GitHub)
domain: main
since_version: 13
function: False
support_level: SupportType.COMMON
shape inference: True
This version of the operator has been available since version 13.
Summary
Neg takes one input data (Tensor<T>) and produces one output data (Tensor<T>) where each element flipped sign, y = -x, is applied to the tensor elementwise.
Inputs
X (heterogeneous) - T: Input tensor
Outputs
Y (heterogeneous) - T: Output tensor
Type Constraints
T in ( tensor(bfloat16), tensor(double), tensor(float), tensor(float16), tensor(int16), tensor(int32), tensor(int64), tensor(int8) ): Constrain input and output types to signed numeric tensors.
Examples
default
import numpy as np
import onnx
node = onnx.helper.make_node(
"Neg",
inputs=["x"],
outputs=["y"],
)
x = np.array([-4, 2]).astype(np.float32)
y = np.negative(x) # expected output [4., -2.],
expect(node, inputs=[x], outputs=[y], name="test_neg_example")
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.negative(x)
expect(node, inputs=[x], outputs=[y], name="test_neg")
Neg - 6¶
Version
name: Neg (GitHub)
domain: main
since_version: 6
function: False
support_level: SupportType.COMMON
shape inference: True
This version of the operator has been available since version 6.
Summary
Neg takes one input data (Tensor<T>) and produces one output data (Tensor<T>) where each element flipped sign, y = -x, is applied to the tensor elementwise.
Inputs
X (heterogeneous) - T: Input tensor
Outputs
Y (heterogeneous) - T: Output tensor
Type Constraints
T in ( tensor(double), tensor(float), tensor(float16), tensor(int16), tensor(int32), tensor(int64), tensor(int8) ): Constrain input and output types to signed numeric tensors.
Neg - 1¶
Version
name: Neg (GitHub)
domain: main
since_version: 1
function: False
support_level: SupportType.COMMON
shape inference: False
This version of the operator has been available since version 1.
Summary
Neg takes one input data (Tensor<T>) and produces one output data (Tensor<T>) where each element flipped sign, y = -x, is applied to the tensor elementwise.
Attributes
consumed_inputs: legacy optimization attribute.
Inputs
X (heterogeneous) - T: Input tensor
Outputs
Y (heterogeneous) - T: Output tensor
Type Constraints
T in ( tensor(double), tensor(float), tensor(float16) ): Constrain input and output types to float tensors.