LRN

LRN - 13

Version

  • name: LRN (GitHub)

  • domain: main

  • since_version: 13

  • function: False

  • support_level: SupportType.COMMON

  • shape inference: True

This version of the operator has been available since version 13.

Summary

Local Response Normalization proposed in the [AlexNet paper](https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf). It normalizes over local input regions. The local region is defined across the channels. For an element X[n, c, d1, …, dk] in a tensor of shape (N x C x D1 x D2, …, Dk), its region is {X[n, i, d1, …, dk] | max(0, c - floor((size - 1) / 2)) <= i <= min(C - 1, c + ceil((size - 1) / 2))}.

square_sum[n, c, d1, …, dk] = sum(X[n, i, d1, …, dk] ^ 2), where max(0, c - floor((size - 1) / 2)) <= i <= min(C - 1, c + ceil((size - 1) / 2)).

Y[n, c, d1, …, dk] = X[n, c, d1, …, dk] / (bias + alpha / size * square_sum[n, c, d1, …, dk] ) ^ beta

Attributes

  • alpha: Scaling parameter.

  • beta: The exponent.

  • bias:

  • size (required): The number of channels to sum over

Inputs

  • X (heterogeneous) - T: Input data tensor from the previous operator; dimensions for image case are (N x C x H x W), where N is the batch size, C is the number of channels, and H and W are the height and the width of the data. For non image case, the dimensions are in the form of (N x C x D1 x D2 … Dn), where N is the batch size. Optionally, if dimension denotation is in effect, the operation expects the input data tensor to arrive with the dimension denotation of [DATA_BATCH, DATA_CHANNEL, DATA_FEATURE, DATA_FEATURE …].

Outputs

  • Y (heterogeneous) - T: Output tensor, which has the shape and type as input tensor

Type Constraints

  • T in ( tensor(bfloat16), tensor(double), tensor(float), tensor(float16) ): Constrain input and output types to float tensors.

Examples

default

import numpy as np
import onnx

alpha = 0.0002
beta = 0.5
bias = 2.0
nsize = 3
node = onnx.helper.make_node(
    "LRN",
    inputs=["x"],
    outputs=["y"],
    alpha=alpha,
    beta=beta,
    bias=bias,
    size=nsize,
)
x = np.random.randn(5, 5, 5, 5).astype(np.float32)
square_sum = np.zeros((5, 5, 5, 5)).astype(np.float32)
for n, c, h, w in np.ndindex(x.shape):
    square_sum[n, c, h, w] = sum(
        x[
            n,
            max(0, c - int(math.floor((nsize - 1) / 2))) : min(
                5, c + int(math.ceil((nsize - 1) / 2)) + 1
            ),
            h,
            w,
        ]
        ** 2
    )
y = x / ((bias + (alpha / nsize) * square_sum) ** beta)
expect(node, inputs=[x], outputs=[y], name="test_lrn")

_default

import numpy as np
import onnx

alpha = 0.0001
beta = 0.75
bias = 1.0
nsize = 3
node = onnx.helper.make_node("LRN", inputs=["x"], outputs=["y"], size=3)
x = np.random.randn(5, 5, 5, 5).astype(np.float32)
square_sum = np.zeros((5, 5, 5, 5)).astype(np.float32)
for n, c, h, w in np.ndindex(x.shape):
    square_sum[n, c, h, w] = sum(
        x[
            n,
            max(0, c - int(math.floor((nsize - 1) / 2))) : min(
                5, c + int(math.ceil((nsize - 1) / 2)) + 1
            ),
            h,
            w,
        ]
        ** 2
    )
y = x / ((bias + (alpha / nsize) * square_sum) ** beta)
expect(node, inputs=[x], outputs=[y], name="test_lrn_default")

LRN - 1

Version

  • name: LRN (GitHub)

  • domain: main

  • since_version: 1

  • function: False

  • support_level: SupportType.COMMON

  • shape inference: True

This version of the operator has been available since version 1.

Summary

Local Response Normalization proposed in the [AlexNet paper](https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf). It normalizes over local input regions. The local region is defined across the channels. For an element X[n, c, d1, …, dk] in a tensor of shape (N x C x D1 x D2, …, Dk), its region is {X[n, i, d1, …, dk] | max(0, c - floor((size - 1) / 2)) <= i <= min(C - 1, c + ceil((size - 1) / 2))}.

square_sum[n, c, d1, …, dk] = sum(X[n, i, d1, …, dk] ^ 2), where max(0, c - floor((size - 1) / 2)) <= i <= min(C - 1, c + ceil((size - 1) / 2)).

Y[n, c, d1, …, dk] = X[n, c, d1, …, dk] / (bias + alpha / size * square_sum[n, c, d1, …, dk] ) ^ beta

Attributes

  • alpha: Scaling parameter.

  • beta: The exponent.

  • bias:

  • size (required): The number of channels to sum over

Inputs

  • X (heterogeneous) - T: Input data tensor from the previous operator; dimensions for image case are (N x C x H x W), where N is the batch size, C is the number of channels, and H and W are the height and the width of the data. For non image case, the dimensions are in the form of (N x C x D1 x D2 … Dn), where N is the batch size. Optionally, if dimension denotation is in effect, the operation expects the input data tensor to arrive with the dimension denotation of [DATA_BATCH, DATA_CHANNEL, DATA_FEATURE, DATA_FEATURE …].

Outputs

  • Y (heterogeneous) - T: Output tensor, which has the shape and type as input tensor

Type Constraints

  • T in ( tensor(double), tensor(float), tensor(float16) ): Constrain input and output types to float tensors.