HardSwish¶
HardSwish - 14¶
Version
name: HardSwish (GitHub)
domain: main
since_version: 14
function: True
support_level: SupportType.COMMON
shape inference: True
This version of the operator has been available since version 14.
Summary
HardSwish takes one input data (Tensor<T>) and produces one output data (Tensor<T>) where the HardSwish function, y = x * max(0, min(1, alpha * x + beta)) = x * HardSigmoid<alpha, beta>(x), where alpha = 1/6 and beta = 0.5, is applied to the tensor elementwise.
Inputs
X (heterogeneous) - T: Input tensor
Outputs
Y (heterogeneous) - T: Output tensor
Type Constraints
T in ( tensor(double), tensor(float), tensor(float16) ): Constrain input and output types to float tensors.
Examples
default
import numpy as np
import onnx
node = onnx.helper.make_node(
"HardSwish",
inputs=["x"],
outputs=["y"],
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = hardswish(x)
expect(node, inputs=[x], outputs=[y], name="test_hardswish")