Reshape - 5 vs 13

Files changed (1) hide show
  1. Reshape5 → Reshape13 +1 -0
Reshape5 → Reshape13 RENAMED
@@ -1 +1 @@
1
1
  Reshape the input tensor similar to numpy.reshape.
2
2
  First input is the data tensor, second input is a shape tensor which specifies the output shape. It outputs the reshaped tensor.
3
3
  At most one dimension of the new shape can be -1. In this case, the value is
4
4
  inferred from the size of the tensor and the remaining dimensions. A dimension
5
5
  could also be 0, in which case the actual dimension value is unchanged (i.e. taken
6
6
  from the input tensor). Shape (second input) could be an empty shape, which means converting to a scalar.
7
7
  The input tensor's shape and the output tensor's shape are required to have the same number of elements.
8
8
  **Inputs**
9
9
  * **data** (heterogeneous) - **T**:
10
10
  An input tensor.
11
11
  * **shape** (heterogeneous) - **tensor(int64)**:
12
12
  Specified shape for output.
13
13
  **Outputs**
14
14
  * **reshaped** (heterogeneous) - **T**:
15
15
  Reshaped data.
16
16
  **Type Constraints**
17
17
  * **T** in (
18
+ tensor(bfloat16),
18
19
  tensor(bool),
19
20
  tensor(complex128),
20
21
  tensor(complex64),
21
22
  tensor(double),
22
23
  tensor(float),
23
24
  tensor(float16),
24
25
  tensor(int16),
25
26
  tensor(int32),
26
27
  tensor(int64),
27
28
  tensor(int8),
28
29
  tensor(string),
29
30
  tensor(uint16),
30
31
  tensor(uint32),
31
32
  tensor(uint64),
32
33
  tensor(uint8)
33
34
  ):
34
35
  Constrain input and output types to all tensor types.