ReduceMin - 1 vs 11

Files changed (1) hide show
  1. ReduceMin1 → ReduceMin11 +2 -1
ReduceMin1 → ReduceMin11 RENAMED
@@ -1 +1 @@
1
1
  Computes the min of the input tensor's element along the provided axes. The resulting
2
2
  tensor has the same rank as the input if keepdims equals 1. If keepdims equal 0, then
3
3
  the resulted tensor have the reduced dimension pruned.
4
4
  The above behavior is similar to numpy, with the exception that numpy defaults keepdims to
5
5
  False instead of True.
6
6
  **Attributes**
7
7
  * **axes**:
8
8
  A list of integers, along which to reduce. The default is to reduce
9
- over all the dimensions of the input tensor.
9
+ over all the dimensions of the input tensor. Accepted range is [-r,
10
+ r-1] where r = rank(data).
10
11
  * **keepdims**:
11
12
  Keep the reduced dimension or not, default 1 means keep reduced
12
13
  dimension.
13
14
  **Inputs**
14
15
  * **data** (heterogeneous) - **T**:
15
16
  An input tensor.
16
17
  **Outputs**
17
18
  * **reduced** (heterogeneous) - **T**:
18
19
  Reduced output tensor.
19
20
  **Type Constraints**
20
21
  * **T** in (
21
22
  tensor(double),
22
23
  tensor(float),
23
24
  tensor(float16),
24
25
  tensor(int32),
25
26
  tensor(int64),
26
27
  tensor(uint32),
27
28
  tensor(uint64)
28
29
  ):
29
30
  Constrain input and output types to high-precision numeric tensors.