Pad - 2 vs 11¶
- Pad2 → Pad11 +87 -22
Pad2 → Pad11
RENAMED
@@ -1 +1 @@
|
|
1
|
+
Given a tensor containing the data to be padded (data), a tensor containing the number of start and end pad values for axis (pads), (optionally) a mode, and (optionally) constant_value,
|
1
|
-
|
2
|
+
a padded tensor (output) is generated.
|
3
|
+
|
4
|
+
The three supported modes are (similar to corresponding modes supported by numpy.pad):
|
5
|
+
|
6
|
+
1) constant(default) - pads with a given constant value as specified by constant_value (which defaults to 0)
|
7
|
+
|
8
|
+
2) reflect - pads with the reflection of the vector mirrored on the first and last values of the vector along each axis
|
9
|
+
|
10
|
+
3) edge - pads with the edge values of array
|
11
|
+
|
2
|
-
Example:
|
12
|
+
Example 1 (constant mode):
|
3
13
|
Insert 0 pads to the beginning of the second dimension.
|
14
|
+
|
4
|
-
data =
|
15
|
+
data =
|
16
|
+
[
|
5
17
|
[1.0, 1.2],
|
6
18
|
[2.3, 3.4],
|
7
19
|
[4.5, 5.7],
|
8
20
|
]
|
21
|
+
|
9
22
|
pads = [0, 2, 0, 0]
|
23
|
+
|
24
|
+
mode = 'constant'
|
25
|
+
|
26
|
+
constant_value = 0.0
|
27
|
+
|
10
|
-
output =
|
28
|
+
output =
|
11
|
-
|
29
|
+
[
|
12
|
-
|
30
|
+
[0.0, 0.0, 1.0, 1.2],
|
13
|
-
|
31
|
+
[0.0, 0.0, 2.3, 3.4],
|
14
|
-
|
32
|
+
[0.0, 0.0, 4.5, 5.7],
|
15
|
-
|
33
|
+
]
|
34
|
+
|
35
|
+
Example 2 (reflect mode):
|
36
|
+
data =
|
37
|
+
[
|
38
|
+
[1.0, 1.2],
|
39
|
+
[2.3, 3.4],
|
40
|
+
[4.5, 5.7],
|
41
|
+
]
|
42
|
+
|
43
|
+
pads = [0, 2, 0, 0]
|
44
|
+
|
45
|
+
mode = 'reflect'
|
46
|
+
|
47
|
+
output =
|
48
|
+
[
|
49
|
+
[1.0, 1.2, 1.0, 1.2],
|
50
|
+
[2.3, 3.4, 2.3, 3.4],
|
51
|
+
[4.5, 5.7, 4.5, 5.7],
|
52
|
+
]
|
53
|
+
|
54
|
+
Example 3 (edge mode):
|
55
|
+
data =
|
56
|
+
[
|
57
|
+
[1.0, 1.2],
|
58
|
+
[2.3, 3.4],
|
59
|
+
[4.5, 5.7],
|
60
|
+
]
|
61
|
+
|
62
|
+
pads = [0, 2, 0, 0]
|
63
|
+
|
64
|
+
mode = 'edge'
|
65
|
+
|
66
|
+
output =
|
67
|
+
[
|
68
|
+
[1.0, 1.0, 1.0, 1.2],
|
69
|
+
[2.3, 2.3, 2.3, 3.4],
|
70
|
+
[4.5, 4.5, 4.5, 5.7],
|
16
71
|
]
|
17
72
|
**Attributes**
|
18
73
|
* **mode**:
|
19
|
-
|
74
|
+
Supported modes: constant(default), reflect, edge
|
20
|
-
* **pads** (required):
|
21
|
-
List of integers indicating the number of padding elements to add or
|
22
|
-
remove (if negative) at the beginning and end of each axis. For 2D
|
23
|
-
it is the number of pixels. pads rank should be double of the
|
24
|
-
input's rank. pads format should be as follow [x1_begin,
|
25
|
-
x2_begin...x1_end, x2_end,...], where xi_begin the number of pixels
|
26
|
-
added at the beginning of axis i and xi_end, the number of pixels
|
27
|
-
added at the end of axis i.
|
28
|
-
* **value**:
|
29
|
-
One float, indicates the value to be filled.
|
30
75
|
**Inputs**
|
76
|
+
Between 2 and 3 inputs.
|
77
|
+
|
31
78
|
* **data** (heterogeneous) - **T**:
|
32
79
|
Input tensor.
|
80
|
+
* **pads** (heterogeneous) - **tensor(int64)**:
|
81
|
+
Tensor of integers indicating the number of padding elements to add
|
82
|
+
or remove (if negative) at the beginning and end of each axis. For
|
83
|
+
2D input tensor, it is the number of pixels. pads should be a 1D
|
84
|
+
tensor of shape [2 * input_rank]. pads format should be:
|
85
|
+
[x1_begin, x2_begin,...,x1_end, x2_end,...], where xi_begin is the
|
86
|
+
number of pad values added at the beginning of axis i and xi_end,
|
87
|
+
the number of pad values added at the end of axis i.
|
88
|
+
* **constant_value** (optional, heterogeneous) - **T**:
|
89
|
+
(Optional) A scalar value to be used if the mode chosen is
|
90
|
+
constant (by default it is 0).
|
33
91
|
**Outputs**
|
34
92
|
* **output** (heterogeneous) - **T**:
|
35
93
|
Tensor after padding.
|
36
94
|
**Type Constraints**
|
37
95
|
* **T** in (
|
38
96
|
tensor(double),
|
39
97
|
tensor(float),
|
40
|
-
tensor(float16)
|
98
|
+
tensor(float16),
|
99
|
+
tensor(int16),
|
100
|
+
tensor(int32),
|
101
|
+
tensor(int64),
|
102
|
+
tensor(int8),
|
103
|
+
tensor(uint16),
|
104
|
+
tensor(uint32),
|
105
|
+
tensor(uint64),
|
106
|
+
tensor(uint8)
|
41
107
|
):
|
42
|
-
Constrain input and output types to float tensors.+ Constrain input and output to only numeric types.
|