LabelEncoder - 1 vs 2¶
- LabelEncoder1 → LabelEncoder2 +39 -24
LabelEncoder1 → LabelEncoder2
RENAMED
@@ -1 +1 @@
|
|
1
|
-
|
1
|
+
Maps each element in the input tensor to another value.
|
2
|
+
The mapping is determined by the two parallel attributes, 'keys_*' and
|
3
|
+
'values_*' attribute. The i-th value in the specified 'keys_*' attribute
|
4
|
+
would be mapped to the i-th value in the specified 'values_*' attribute. It
|
2
|
-
|
5
|
+
implies that input's element type and the element type of the specified
|
3
|
-
|
6
|
+
'keys_*' should be identical while the output type is identical to the
|
7
|
+
specified 'values_*' attribute. If an input element can not be found in the
|
8
|
+
specified 'keys_*' attribute, the 'default_*' that matches the specified
|
9
|
+
'values_*' attribute may be used as its output value.
|
4
|
-
|
10
|
+
Let's consider an example which maps a string tensor to an integer tensor.
|
11
|
+
Assume and 'keys_strings' is ["Amy", "Sally"], 'values_int64s' is [5, 6],
|
12
|
+
and 'default_int64' is '-1'. The input ["Dori", "Amy", "Amy", "Sally",
|
5
|
-
|
13
|
+
"Sally"] would be mapped to [-1, 5, 5, 6, 6].
|
6
|
-
should be defined.
|
7
|
-
|
14
|
+
Since this operator is an one-to-one mapping, its input and output shapes
|
8
|
-
'
|
15
|
+
are the same. Notice that only one of 'keys_*'/'values_*' can be set.
|
9
|
-
When converting from strings to integers, the string is looked up in the list
|
10
|
-
|
16
|
+
For key look-up, bit-wise comparison is used so even a float NaN can be
|
17
|
+
mapped to a value in 'values_*' attribute.
|
11
18
|
**Attributes**
|
12
|
-
* **
|
19
|
+
* **default_float**:
|
13
|
-
A
|
20
|
+
A float.
|
14
21
|
* **default_int64**:
|
22
|
+
An integer.
|
15
|
-
An integer to use when an input string value is not found in the
|
16
|
-
map.<br>One and only one of the 'default_*' attributes must be
|
17
|
-
defined.
|
18
23
|
* **default_string**:
|
24
|
+
A string.
|
25
|
+
* **keys_floats**:
|
26
|
+
A list of floats.
|
27
|
+
* **keys_int64s**:
|
28
|
+
A list of ints.
|
29
|
+
* **keys_strings**:
|
19
|
-
A
|
30
|
+
A list of strings. One and only one of 'keys_*'s should be set.
|
31
|
+
* **values_floats**:
|
32
|
+
A list of floats.
|
33
|
+
* **values_int64s**:
|
34
|
+
A list of ints.
|
35
|
+
* **values_strings**:
|
20
|
-
|
36
|
+
A list of strings. One and only one of 'value_*'s should be set.
|
21
|
-
defined.
|
22
37
|
**Inputs**
|
23
38
|
* **X** (heterogeneous) - **T1**:
|
24
|
-
Input data.
|
39
|
+
Input data. It can be either tensor or scalar.
|
25
40
|
**Outputs**
|
26
41
|
* **Y** (heterogeneous) - **T2**:
|
42
|
+
Output data.
|
27
|
-
Output data. If strings are input, the output values are integers,
|
28
|
-
and vice versa.
|
29
43
|
**Type Constraints**
|
30
44
|
* **T1** in (
|
45
|
+
tensor(float),
|
31
46
|
tensor(int64),
|
32
47
|
tensor(string)
|
33
48
|
):
|
49
|
+
The input type is a tensor of any shape.
|
34
|
-
The input type must be a tensor of integers or strings, of any
|
35
|
-
shape.
|
36
50
|
* **T2** in (
|
51
|
+
tensor(float),
|
37
52
|
tensor(int64),
|
38
53
|
tensor(string)
|
39
54
|
):
|
55
|
+
Output type is determined by the specified 'values_*' attribute.- The output type will be a tensor of strings or integers, and will
|
40
|
-
have the same shape as the input.
|