LSTM - 1 vs 7

Files changed (1) hide show
  1. LSTM1 → LSTM7 +7 -8
LSTM1 → LSTM7 RENAMED
@@ -1 +1 @@
1
1
  Computes an one-layer LSTM. This operator is usually supported via some
2
2
  custom implementation such as CuDNN.
3
3
  Notations:
4
4
  X - input tensor
5
5
  i - input gate
6
6
  o - output gate
7
7
  f - forget gate
8
8
  c - cell gate
9
9
  t - time step (t-1 means previous time step)
10
10
  W[iofc] - W parameter weight matrix for input, output, forget, and cell gates
11
11
  R[iofc] - R recurrence weight matrix for input, output, forget, and cell gates
12
12
  Wb[iofc] - W bias vectors for input, output, forget, and cell gates
13
13
  Rb[iofc] - R bias vectors for input, output, forget, and cell gates
14
14
  P[iof] - P peephole weight vector for input, output, and forget gates
15
15
  WB[iofc] - W parameter weight matrix for backward input, output, forget, and cell gates
16
16
  RB[iofc] - R recurrence weight matrix for backward input, output, forget, and cell gates
17
17
  WBb[iofc] - W bias vectors for backward input, output, forget, and cell gates
18
18
  RBb[iofc] - R bias vectors for backward input, output, forget, and cell gates
19
19
  PB[iof] - P peephole weight vector for backward input, output, and forget gates
20
20
  H - Hidden state
21
21
  num_directions - 2 if direction == bidirectional else 1
22
22
  Activation functions:
23
23
  Relu(x) - max(0, x)
24
24
  Tanh(x) - (1 - e^{-2x})/(1 + e^{-2x})
25
25
  Sigmoid(x) - 1/(1 + e^{-x})
26
26
  (NOTE: Below are optional)
27
27
  Affine(x) - alpha*x + beta
28
28
  LeakyRelu(x) - x if x >= 0 else alpha * x
29
29
  ThresholdedRelu(x) - x if x >= alpha else 0
30
30
  ScaledTanh(x) - alpha*Tanh(beta*x)
31
31
  HardSigmoid(x) - min(max(alpha*x + beta, 0), 1)
32
32
  Elu(x) - x if x >= 0 else alpha*(e^x - 1)
33
33
  Softsign(x) - x/(1 + |x|)
34
34
  Softplus(x) - log(1 + e^x)
35
35
  Equations (Default: f=Sigmoid, g=Tanh, h=Tanh):
36
- - it = f(Xt*(Wi^T) + Ht-1*Ri + Pi (.) Ct-1 + Wbi + Rbi)
36
+ - it = f(Xt*(Wi^T) + Ht-1*(Ri^T) + Pi (.) Ct-1 + Wbi + Rbi)
37
- - ft = f(Xt*(Wf^T) + Ht-1*Rf + Pf (.) Ct-1 + Wbf + Rbf)
37
+ - ft = f(Xt*(Wf^T) + Ht-1*(Rf^T) + Pf (.) Ct-1 + Wbf + Rbf)
38
- - ct = g(Xt*(Wc^T) + Ht-1*Rc + Wbc + Rbc)
38
+ - ct = g(Xt*(Wc^T) + Ht-1*(Rc^T) + Wbc + Rbc)
39
39
  - Ct = ft (.) Ct-1 + it (.) ct
40
- - ot = f(Xt*(Wo^T) + Ht-1*Ro + Po (.) Ct + Wbo + Rbo)
40
+ - ot = f(Xt*(Wo^T) + Ht-1*(Ro^T) + Po (.) Ct + Wbo + Rbo)
41
41
  - Ht = ot (.) h(Ct)
42
+ This operator has **optional** inputs/outputs. See ONNX <https://github.com/onnx/onnx/blob/master/docs/IR.md>_ for more details about the representation of optional arguments. An empty string may be used in the place of an actual argument's name to indicate a missing argument. Trailing optional arguments (those not followed by an argument that is present) may also be simply omitted.
42
43
  **Attributes**
43
44
  * **activation_alpha**:
44
45
  Optional scaling values used by some activation functions. The
45
46
  values are consumed in the order of activation functions, for
46
47
  example (f, g, h) in LSTM. Default values are the same as of
47
48
  corresponding ONNX operators.For example with LeakyRelu, the default
48
49
  alpha is 0.01.
49
50
  * **activation_beta**:
50
51
  Optional scaling values used by some activation functions. The
51
52
  values are consumed in the order of activation functions, for
52
53
  example (f, g, h) in LSTM. Default values are the same as of
53
54
  corresponding ONNX operators.
54
55
  * **activations**:
55
56
  A list of 3 (or 6 if bidirectional) activation functions for input,
56
57
  output, forget, cell, and hidden. The activation functions must be
57
58
  one of the activation functions specified above. Optional: See the
58
59
  equations for default if not specified.
59
60
  * **clip**:
60
61
  Cell clip threshold. Clipping bounds the elements of a tensor in the
61
62
  range of [-threshold, +threshold] and is applied to the input of
62
63
  activations. No clip if not specified.
63
64
  * **direction**:
64
65
  Specify if the RNN is forward, reverse, or bidirectional. Must be
65
66
  one of forward (default), reverse, or bidirectional.
66
67
  * **hidden_size**:
67
68
  Number of neurons in the hidden layer
68
69
  * **input_forget**:
69
- Couple the input and forget gates if 1, default 0.
70
+ Couple the input and forget gates if 1.
70
- * **output_sequence**:
71
- The sequence output for the hidden is optional if 0. Default 0.
72
71
  **Inputs**
73
72
  Between 3 and 8 inputs.
74
73
  * **X** (heterogeneous) - **T**:
75
74
  The input sequences packed (and potentially padded) into one 3-D
76
75
  tensor with the shape of [seq_length, batch_size, input_size].
77
76
  * **W** (heterogeneous) - **T**:
78
77
  The weight tensor for the gates. Concatenation of W[iofc] and
79
78
  WB[iofc] (if bidirectional) along dimension 0. The tensor has
80
79
  shape [num_directions, 4*hidden_size, input_size].
81
80
  * **R** (heterogeneous) - **T**:
82
81
  The recurrence weight tensor. Concatenation of R[iofc] and
83
82
  RB[iofc] (if bidirectional) along dimension 0. This tensor has
84
83
  shape [num_directions, 4*hidden_size, hidden_size].
85
84
  * **B** (optional, heterogeneous) - **T**:
86
85
  The bias tensor for input gate. Concatenation of [Wb[iofc],
87
86
  Rb[iofc]], and [WBb[iofc], RBb[iofc]] (if bidirectional) along
88
87
  dimension 0. This tensor has shape [num_directions,
89
88
  8*hidden_size]. Optional: If not specified - assumed to be 0.
90
89
  * **sequence_lens** (optional, heterogeneous) - **T1**:
91
90
  Optional tensor specifying lengths of the sequences in a batch. If
92
91
  not specified - assumed all sequences in the batch to have length
93
92
  seq_length. It has shape [batch_size].
94
93
  * **initial_h** (optional, heterogeneous) - **T**:
95
94
  Optional initial value of the hidden. If not specified - assumed to
96
95
  be 0. It has shape [num_directions, batch_size, hidden_size].
97
96
  * **initial_c** (optional, heterogeneous) - **T**:
98
97
  Optional initial value of the cell. If not specified - assumed to be
99
98
  0. It has shape [num_directions, batch_size, hidden_size].
100
99
  * **P** (optional, heterogeneous) - **T**:
101
100
  The weight tensor for peepholes. Concatenation of P[iof] and
102
101
  PB[iof] (if bidirectional) along dimension 0. It has shape
103
102
  [num_directions, 3*hidde_size]. Optional: If not specified -
104
103
  assumed to be 0.
105
104
  **Outputs**
106
105
  Between 0 and 3 outputs.
107
106
  * **Y** (optional, heterogeneous) - **T**:
108
107
  A tensor that concats all the intermediate output values of the
109
108
  hidden. It has shape [seq_length, num_directions, batch_size,
110
- hidden_size]. It is optional if output_sequence is 0.
109
+ hidden_size].
111
110
  * **Y_h** (optional, heterogeneous) - **T**:
112
111
  The last output value of the hidden. It has shape [num_directions,
113
112
  batch_size, hidden_size].
114
113
  * **Y_c** (optional, heterogeneous) - **T**:
115
114
  The last output value of the cell. It has shape [num_directions,
116
115
  batch_size, hidden_size].
117
116
  **Type Constraints**
118
117
  * **T** in (
119
118
  tensor(double),
120
119
  tensor(float),
121
120
  tensor(float16)
122
121
  ):
123
122
  Constrain input and output types to float tensors.
124
123
  * **T1** in (
125
124
  tensor(int32)
126
125
  ):
127
126
  Constrain seq_lens to integer tensor.