HardSigmoid - 1 vs 6

Files changed (1) hide show
  1. HardSigmoid1 → HardSigmoid6 +2 -4
HardSigmoid1 → HardSigmoid6 RENAMED
@@ -1 +1 @@
1
1
  HardSigmoid takes one input data (Tensor<T>) and produces one output data
2
2
  (Tensor<T>) where the HardSigmoid function, y = max(0, min(1, alpha * x + beta)),
3
3
  is applied to the tensor elementwise.
4
4
  **Attributes**
5
5
  * **alpha**:
6
- Value of alpha default to 0.2
6
+ Value of alpha.
7
7
  * **beta**:
8
+ Value of beta.
8
- Value of beta default to 0.5
9
- * **consumed_inputs**:
10
- legacy optimization attribute.
11
9
  **Inputs**
12
10
  * **X** (heterogeneous) - **T**:
13
11
  Input tensor
14
12
  **Outputs**
15
13
  * **Y** (heterogeneous) - **T**:
16
14
  Output tensor
17
15
  **Type Constraints**
18
16
  * **T** in (
19
17
  tensor(double),
20
18
  tensor(float),
21
19
  tensor(float16)
22
20
  ):
23
21
  Constrain input and output types to float tensors.