Dropout - 1 vs 6

Files changed (1) hide show
  1. Dropout1 → Dropout6 +0 -2
Dropout1 → Dropout6 RENAMED
@@ -1 +1 @@
1
1
  Dropout takes one input data (Tensor<float>) and produces two Tensor outputs,
2
2
  output (Tensor<float>) and mask (Tensor<bool>). Depending on whether it is in
3
3
  test mode or not, the output Y will either be a random dropout, or a simple
4
4
  copy of the input. Note that our implementation of Dropout does scaling in
5
5
  the training phase, so during testing nothing needs to be done.
6
6
  **Attributes**
7
- * **consumed_inputs**:
8
- legacy optimization attribute.
9
7
  * **is_test**:
10
8
  (int, default 0) if nonzero, run dropout in test mode where the
11
9
  output is simply Y = X.
12
10
  * **ratio**:
13
11
  (float, default 0.5) the ratio of random dropout
14
12
  **Inputs**
15
13
  * **data** (heterogeneous) - **T**:
16
14
  The input data as Tensor.
17
15
  **Outputs**
18
16
  Between 1 and 2 outputs.
19
17
  * **output** (heterogeneous) - **T**:
20
18
  The output.
21
19
  * **mask** (optional, heterogeneous) - **T**:
22
20
  The output mask. If is_test is nonzero, this output is not filled.
23
21
  **Type Constraints**
24
22
  * **T** in (
25
23
  tensor(double),
26
24
  tensor(float),
27
25
  tensor(float16)
28
26
  ):
29
27
  Constrain input and output types to float tensors.