DepthToSpace - 11 vs 13

Files changed (1) hide show
  1. DepthToSpace11 → DepthToSpace13 +1 -0
DepthToSpace11 → DepthToSpace13 RENAMED
@@ -1 +1 @@
1
1
  DepthToSpace rearranges (permutes) data from depth into blocks of spatial data.
2
2
  This is the reverse transformation of SpaceToDepth. More specifically, this op outputs a copy of
3
3
  the input tensor where values from the depth dimension are moved in spatial blocks to the height
4
4
  and width dimensions. By default, mode = DCR.
5
5
  In the DCR mode, elements along the depth dimension from the input tensor are rearranged in the
6
6
  following order: depth, column, and then row. The output y is computed from the input x as below:
7
7
  b, c, h, w = x.shape
8
8
  tmp = np.reshape(x, [b, blocksize, blocksize, c // (blocksize**2), h, w])
9
9
  tmp = np.transpose(tmp, [0, 3, 4, 1, 5, 2])
10
10
  y = np.reshape(tmp, [b, c // (blocksize**2), h * blocksize, w * blocksize])
11
11
  In the CRD mode, elements along the depth dimension from the input tensor are rearranged in the
12
12
  following order: column, row, and the depth. The output y is computed from the input x as below:
13
13
  b, c, h, w = x.shape
14
14
  tmp = np.reshape(x, [b, c // (blocksize ** 2), blocksize, blocksize, h, w])
15
15
  tmp = np.transpose(tmp, [0, 1, 4, 2, 5, 3])
16
16
  y = np.reshape(tmp, [b, c // (blocksize ** 2), h * blocksize, w * blocksize])
17
17
  **Attributes**
18
18
  * **blocksize** (required):
19
19
  Blocks of [blocksize, blocksize] are moved.
20
20
  * **mode**:
21
21
  DCR (default) for depth-column-row order re-arrangement. Use CRD for
22
22
  column-row-depth order.
23
23
  **Inputs**
24
24
  * **input** (heterogeneous) - **T**:
25
25
  Input tensor of [N,C,H,W], where N is the batch axis, C is the
26
26
  channel or depth, H is the height and W is the width.
27
27
  **Outputs**
28
28
  * **output** (heterogeneous) - **T**:
29
29
  Output tensor of [N, C/(blocksize * blocksize), H * blocksize, W *
30
30
  blocksize].
31
31
  **Type Constraints**
32
32
  * **T** in (
33
+ tensor(bfloat16),
33
34
  tensor(bool),
34
35
  tensor(complex128),
35
36
  tensor(complex64),
36
37
  tensor(double),
37
38
  tensor(float),
38
39
  tensor(float16),
39
40
  tensor(int16),
40
41
  tensor(int32),
41
42
  tensor(int64),
42
43
  tensor(int8),
43
44
  tensor(string),
44
45
  tensor(uint16),
45
46
  tensor(uint32),
46
47
  tensor(uint64),
47
48
  tensor(uint8)
48
49
  ):
49
50
  Constrain input and output types to all tensor types.