com.microsoft.nchwc - MaxPool#

MaxPool - 1#

Version

  • name: MaxPool (GitHub)

  • domain: com.microsoft.nchwc

  • since_version: 1

  • function:

  • support_level: SupportType.COMMON

  • shape inference: True

This version of the operator has been available since version 1 of domain com.microsoft.nchwc.

Summary

Attributes

  • auto_pad - STRING :

  • ceil_mode - INT :

  • dilations - INTS :

  • kernel_shape - INTS (required) :

  • pads - INTS :

  • storage_order - INT :

  • strides - INTS :

Inputs

  • X (heterogeneous) - T:

Outputs

  • Y (heterogeneous) - T:

Type Constraints

  • T in ( tensor(float) ): Constrain input and output types to float tensors

Examples

_maxpool_2d_uint8

import numpy as np
import onnx

"""
input_shape: [1, 1, 5, 5]
output_shape: [1, 1, 5, 5]
pad_shape: [4, 4] -> [2, 2, 2, 2] by axis
"""
node = onnx.helper.make_node(
    "MaxPool",
    inputs=["x"],
    outputs=["y"],
    kernel_shape=[5, 5],
    pads=[2, 2, 2, 2],
)
x = np.array(
    [
        [
            [
                [1, 2, 3, 4, 5],
                [6, 7, 8, 9, 10],
                [11, 12, 13, 14, 15],
                [16, 17, 18, 19, 20],
                [21, 22, 23, 24, 25],
            ]
        ]
    ]
).astype(np.uint8)
y = np.array(
    [
        [
            [
                [13, 14, 15, 15, 15],
                [18, 19, 20, 20, 20],
                [23, 24, 25, 25, 25],
                [23, 24, 25, 25, 25],
                [23, 24, 25, 25, 25],
            ]
        ]
    ]
).astype(np.uint8)

expect(node, inputs=[x], outputs=[y], name="test_maxpool_2d_uint8")

_maxpool_2d_precomputed_pads

import numpy as np
import onnx

"""
input_shape: [1, 1, 5, 5]
output_shape: [1, 1, 5, 5]
pad_shape: [4, 4] -> [2, 2, 2, 2] by axis
"""
node = onnx.helper.make_node(
    "MaxPool",
    inputs=["x"],
    outputs=["y"],
    kernel_shape=[5, 5],
    pads=[2, 2, 2, 2],
)
x = np.array(
    [
        [
            [
                [1, 2, 3, 4, 5],
                [6, 7, 8, 9, 10],
                [11, 12, 13, 14, 15],
                [16, 17, 18, 19, 20],
                [21, 22, 23, 24, 25],
            ]
        ]
    ]
).astype(np.float32)
y = np.array(
    [
        [
            [
                [13, 14, 15, 15, 15],
                [18, 19, 20, 20, 20],
                [23, 24, 25, 25, 25],
                [23, 24, 25, 25, 25],
                [23, 24, 25, 25, 25],
            ]
        ]
    ]
).astype(np.float32)

expect(node, inputs=[x], outputs=[y], name="test_maxpool_2d_precomputed_pads")

_maxpool_with_argmax_2d_precomputed_pads

import numpy as np
import onnx

"""
input_shape: [1, 1, 5, 5]
output_shape: [1, 1, 5, 5]
pad_shape: [4, 4] -> [2, 2, 2, 2] by axis
"""
node = onnx.helper.make_node(
    "MaxPool",
    inputs=["x"],
    outputs=["y", "z"],
    kernel_shape=[5, 5],
    pads=[2, 2, 2, 2],
)
x = np.array(
    [
        [
            [
                [1, 2, 3, 4, 5],
                [6, 7, 8, 9, 10],
                [11, 12, 13, 14, 15],
                [16, 17, 18, 19, 20],
                [21, 22, 23, 24, 25],
            ]
        ]
    ]
).astype(np.float32)
y = np.array(
    [
        [
            [
                [13, 14, 15, 15, 15],
                [18, 19, 20, 20, 20],
                [23, 24, 25, 25, 25],
                [23, 24, 25, 25, 25],
                [23, 24, 25, 25, 25],
            ]
        ]
    ]
).astype(np.float32)
z = np.array(
    [
        [
            [
                [12, 13, 14, 14, 14],
                [17, 18, 19, 19, 19],
                [22, 23, 24, 24, 24],
                [22, 23, 24, 24, 24],
                [22, 23, 24, 24, 24],
            ]
        ]
    ]
).astype(np.int64)

expect(
    node,
    inputs=[x],
    outputs=[y, z],
    name="test_maxpool_with_argmax_2d_precomputed_pads",
)

_maxpool_2d_precomputed_strides

import numpy as np
import onnx

"""
input_shape: [1, 1, 5, 5]
output_shape: [1, 1, 2, 2]
"""
node = onnx.helper.make_node(
    "MaxPool", inputs=["x"], outputs=["y"], kernel_shape=[2, 2], strides=[2, 2]
)
x = np.array(
    [
        [
            [
                [1, 2, 3, 4, 5],
                [6, 7, 8, 9, 10],
                [11, 12, 13, 14, 15],
                [16, 17, 18, 19, 20],
                [21, 22, 23, 24, 25],
            ]
        ]
    ]
).astype(np.float32)
y = np.array([[[[7, 9], [17, 19]]]]).astype(np.float32)

expect(
    node, inputs=[x], outputs=[y], name="test_maxpool_2d_precomputed_strides"
)

_maxpool_with_argmax_2d_precomputed_strides

import numpy as np
import onnx

"""
input_shape: [1, 1, 5, 5]
output_shape: [1, 1, 2, 2]
"""
node = onnx.helper.make_node(
    "MaxPool",
    inputs=["x"],
    outputs=["y", "z"],
    kernel_shape=[2, 2],
    strides=[2, 2],
    storage_order=1,
)
x = np.array(
    [
        [
            [
                [1, 2, 3, 4, 5],
                [6, 7, 8, 9, 10],
                [11, 12, 13, 14, 15],
                [16, 17, 18, 19, 20],
                [21, 22, 23, 24, 25],
            ]
        ]
    ]
).astype(np.float32)
y = np.array([[[[7, 9], [17, 19]]]]).astype(np.float32)
z = np.array([[[[6, 16], [8, 18]]]]).astype(np.int64)

expect(
    node,
    inputs=[x],
    outputs=[y, z],
    name="test_maxpool_with_argmax_2d_precomputed_strides",
)

_maxpool_2d_precomputed_same_upper

import numpy as np
import onnx

"""
input_shape: [1, 1, 5, 5]
output_shape: [1, 1, 3, 3]
pad_shape: [2, 2] -> [1, 1, 1, 1] by axis
"""
node = onnx.helper.make_node(
    "MaxPool",
    inputs=["x"],
    outputs=["y"],
    kernel_shape=[3, 3],
    strides=[2, 2],
    auto_pad="SAME_UPPER",
)
x = np.array(
    [
        [
            [
                [1, 2, 3, 4, 5],
                [6, 7, 8, 9, 10],
                [11, 12, 13, 14, 15],
                [16, 17, 18, 19, 20],
                [21, 22, 23, 24, 25],
            ]
        ]
    ]
).astype(np.float32)
y = np.array([[[[7, 9, 10], [17, 19, 20], [22, 24, 25]]]]).astype(np.float32)

expect(
    node, inputs=[x], outputs=[y], name="test_maxpool_2d_precomputed_same_upper"
)

_maxpool_1d_default

import numpy as np
import onnx

"""
input_shape: [1, 3, 32]
output_shape: [1, 3, 31]
"""
node = onnx.helper.make_node(
    "MaxPool",
    inputs=["x"],
    outputs=["y"],
    kernel_shape=[2],
)
x = np.random.randn(1, 3, 32).astype(np.float32)
x_shape = np.shape(x)
kernel_shape = [2]
strides = [1]
out_shape = get_output_shape("VALID", x_shape[2:], kernel_shape, strides)
padded = x
y = pool(padded, x_shape, kernel_shape, strides, out_shape, [0], "MAX")

expect(node, inputs=[x], outputs=[y], name="test_maxpool_1d_default")

_maxpool_2d_default

import numpy as np
import onnx

"""
input_shape: [1, 3, 32, 32]
output_shape: [1, 3, 31, 31]
"""
node = onnx.helper.make_node(
    "MaxPool",
    inputs=["x"],
    outputs=["y"],
    kernel_shape=[2, 2],
)
x = np.random.randn(1, 3, 32, 32).astype(np.float32)
x_shape = np.shape(x)
kernel_shape = (2, 2)
strides = (1, 1)
out_shape = get_output_shape("VALID", x_shape[2:], kernel_shape, strides)
padded = x
y = pool(padded, x_shape, kernel_shape, strides, out_shape, (0, 0), "MAX")

expect(node, inputs=[x], outputs=[y], name="test_maxpool_2d_default")

_maxpool_3d_default

import numpy as np
import onnx

"""
input_shape: [1, 3, 32, 32, 32]
output_shape: [1, 3, 31, 31, 31]
"""
node = onnx.helper.make_node(
    "MaxPool",
    inputs=["x"],
    outputs=["y"],
    kernel_shape=[2, 2, 2],
)
x = np.random.randn(1, 3, 32, 32, 32).astype(np.float32)
x_shape = np.shape(x)
kernel_shape = [2, 2, 2]
strides = [1, 1, 1]
out_shape = get_output_shape("VALID", x_shape[2:], kernel_shape, strides)
padded = x
y = pool(padded, x_shape, kernel_shape, strides, out_shape, [0, 0, 0], "MAX")

expect(node, inputs=[x], outputs=[y], name="test_maxpool_3d_default")

_maxpool_2d_same_upper

import numpy as np
import onnx

"""
input_shape: [1, 3, 32, 32]
output_shape: [1, 3, 32, 32]
pad_shape: [1, 1] -> [0, 1, 0, 1] by axis
"""
node = onnx.helper.make_node(
    "MaxPool",
    inputs=["x"],
    outputs=["y"],
    kernel_shape=[2, 2],
    auto_pad="SAME_UPPER",
)
x = np.random.randn(1, 3, 32, 32).astype(np.float32)
x_shape = np.shape(x)
kernel_shape = (2, 2)
strides = (1, 1)
out_shape = get_output_shape("SAME_UPPER", x_shape[2:], kernel_shape, strides)
pad_shape = get_pad_shape(
    "SAME_UPPER", x_shape[2:], kernel_shape, strides, out_shape
)
pad_top = pad_shape[0] // 2
pad_bottom = pad_shape[0] - pad_top
pad_left = pad_shape[1] // 2
pad_right = pad_shape[1] - pad_left
padded = np.pad(
    x,
    ((0, 0), (0, 0), (pad_top, pad_bottom), (pad_left, pad_right)),
    mode="constant",
    constant_values=np.nan,
)
y = pool(padded, x_shape, kernel_shape, strides, out_shape, pad_shape, "MAX")

expect(node, inputs=[x], outputs=[y], name="test_maxpool_2d_same_upper")

_maxpool_2d_same_lower

import numpy as np
import onnx

"""
input_shape: [1, 3, 32, 32]
output_shape: [1, 3, 32, 32]
pad_shape: [1, 1] -> [1, 0, 1, 0] by axis
"""
node = onnx.helper.make_node(
    "MaxPool",
    inputs=["x"],
    outputs=["y"],
    kernel_shape=[2, 2],
    auto_pad="SAME_LOWER",
)
x = np.random.randn(1, 3, 32, 32).astype(np.float32)
x_shape = np.shape(x)
kernel_shape = (2, 2)
strides = (1, 1)
out_shape = get_output_shape("SAME_LOWER", x_shape[2:], kernel_shape, strides)
pad_shape = get_pad_shape(
    "SAME_LOWER", x_shape[2:], kernel_shape, strides, out_shape
)
pad_bottom = pad_shape[0] // 2
pad_top = pad_shape[0] - pad_bottom
pad_right = pad_shape[1] // 2
pad_left = pad_shape[1] - pad_right
padded = np.pad(
    x,
    ((0, 0), (0, 0), (pad_top, pad_bottom), (pad_left, pad_right)),
    mode="constant",
    constant_values=np.nan,
)
y = pool(padded, x_shape, kernel_shape, strides, out_shape, pad_shape, "MAX")

expect(node, inputs=[x], outputs=[y], name="test_maxpool_2d_same_lower")

_maxpool_2d_pads

import numpy as np
import onnx

"""
input_shape: [1, 3, 28, 28]
output_shape: [1, 3, 30, 30]
pad_shape: [4, 4] -> [2, 2, 2, 2] by axis
"""
node = onnx.helper.make_node(
    "MaxPool",
    inputs=["x"],
    outputs=["y"],
    kernel_shape=[3, 3],
    pads=[2, 2, 2, 2],
)
x = np.random.randn(1, 3, 28, 28).astype(np.float32)
x_shape = np.shape(x)
kernel_shape = (3, 3)
strides = (1, 1)
pad_bottom = pad_top = pad_right = pad_left = 2
pad_shape = [pad_top + pad_bottom, pad_left + pad_right]
out_shape = get_output_shape(
    "VALID", np.add(x_shape[2:], pad_shape), kernel_shape, strides
)
padded = np.pad(
    x,
    ((0, 0), (0, 0), (pad_top, pad_bottom), (pad_left, pad_right)),
    mode="constant",
    constant_values=np.nan,
)
y = pool(padded, x_shape, kernel_shape, strides, out_shape, pad_shape, "MAX")

expect(node, inputs=[x], outputs=[y], name="test_maxpool_2d_pads")

_maxpool_2d_strides

import numpy as np
import onnx

"""
input_shape: [1, 3, 32, 32]
output_shape: [1, 3, 10, 10]
"""
node = onnx.helper.make_node(
    "MaxPool", inputs=["x"], outputs=["y"], kernel_shape=[5, 5], strides=[3, 3]
)
x = np.random.randn(1, 3, 32, 32).astype(np.float32)
x_shape = np.shape(x)
kernel_shape = (5, 5)
strides = (3, 3)
out_shape = get_output_shape("VALID", x_shape[2:], kernel_shape, strides)
padded = x
y = pool(padded, x_shape, kernel_shape, strides, out_shape, (0, 0), "MAX")

expect(node, inputs=[x], outputs=[y], name="test_maxpool_2d_strides")

_maxpool_2d_ceil

import numpy as np
import onnx

"""
input_shape: [1, 1, 4, 4]
output_shape: [1, 1, 2, 2]
"""
node = onnx.helper.make_node(
    "MaxPool",
    inputs=["x"],
    outputs=["y"],
    kernel_shape=[3, 3],
    strides=[2, 2],
    ceil_mode=True,
)
x = np.array(
    [
        [
            [
                [1, 2, 3, 4],
                [5, 6, 7, 8],
                [9, 10, 11, 12],
                [13, 14, 15, 16],
            ]
        ]
    ]
).astype(np.float32)
y = np.array([[[[11, 12], [15, 16]]]]).astype(np.float32)

expect(node, inputs=[x], outputs=[y], name="test_maxpool_2d_ceil")

_maxpool_2d_dilations

import numpy as np
import onnx

"""
input_shape: [1, 1, 4, 4]
output_shape: [1, 1, 2, 2]
"""
node = onnx.helper.make_node(
    "MaxPool",
    inputs=["x"],
    outputs=["y"],
    kernel_shape=[2, 2],
    strides=[1, 1],
    dilations=[2, 2],
)
x = np.array(
    [
        [
            [
                [1, 2, 3, 4],
                [5, 6, 7, 8],
                [9, 10, 11, 12],
                [13, 14, 15, 16],
            ]
        ]
    ]
).astype(np.float32)
y = np.array([[[[11, 12], [15, 16]]]]).astype(np.float32)

expect(node, inputs=[x], outputs=[y], name="test_maxpool_2d_dilations")