Note
Go to the end to download the full example code
Metadata#
ONNX format contains metadata related to how the model was produced. It is useful when the model is deployed to production to keep track of which instance was used at a specific time. Let’s see how to do that with a simple logistic regression model trained with scikit-learn and converted with sklearn-onnx.
from onnxruntime.datasets import get_example
example = get_example("logreg_iris.onnx")
import onnx
model = onnx.load(example)
print("doc_string={}".format(model.doc_string))
print("domain={}".format(model.domain))
print("ir_version={}".format(model.ir_version))
print("metadata_props={}".format(model.metadata_props))
print("model_version={}".format(model.model_version))
print("producer_name={}".format(model.producer_name))
print("producer_version={}".format(model.producer_version))
doc_string=
domain=onnxml
ir_version=3
metadata_props=[]
model_version=0
producer_name=OnnxMLTools
producer_version=1.2.0.0116
With ONNX Runtime:
import onnxruntime as rt
sess = rt.InferenceSession(example, providers=rt.get_available_providers())
meta = sess.get_modelmeta()
print("custom_metadata_map={}".format(meta.custom_metadata_map))
print("description={}".format(meta.description))
print("domain={}".format(meta.domain, meta.domain))
print("graph_name={}".format(meta.graph_name))
print("producer_name={}".format(meta.producer_name))
print("version={}".format(meta.version))
custom_metadata_map={}
description=
domain=onnxml
graph_name=3c59201b940f410fa29dc71ea9d5767d
producer_name=OnnxMLTools
version=0
Total running time of the script: ( 0 minutes 0.007 seconds)