Softsign#
Softsign - 1#
Version
name: Softsign (GitHub)
domain: main
since_version: 1
function:
support_level: SupportType.COMMON
shape inference: True
This version of the operator has been available since version 1.
Summary
Inputs
input (heterogeneous) - T:
Outputs
output (heterogeneous) - T:
Type Constraints
T in ( tensor(double), tensor(float), tensor(float16) ): Constrain input and output types to float tensors.
Examples
default
import numpy as np
import onnx
node = onnx.helper.make_node(
"Softsign",
inputs=["x"],
outputs=["y"],
)
x = np.array([-1, 0, 1]).astype(np.float32)
y = np.array([-0.5, 0, 0.5]).astype(np.float32)
expect(node, inputs=[x], outputs=[y], name="test_softsign_example")
x = np.random.randn(3, 4, 5).astype(np.float32)
y = x / (1 + np.abs(x))
expect(node, inputs=[x], outputs=[y], name="test_softsign")