SequenceInsert#
SequenceInsert - 11#
Version
name: SequenceInsert (GitHub)
domain: main
since_version: 11
function:
support_level: SupportType.COMMON
shape inference: True
This version of the operator has been available since version 11.
Summary
Inputs
Between 2 and 3 inputs.
input_sequence (heterogeneous) - S:
tensor (heterogeneous) - T:
position (optional, heterogeneous) - I:
Outputs
output_sequence (heterogeneous) - S:
Type Constraints
T in ( tensor(bool), tensor(complex128), tensor(complex64), tensor(double), tensor(float), tensor(float16), tensor(int16), tensor(int32), tensor(int64), tensor(int8), tensor(string), tensor(uint16), tensor(uint32), tensor(uint64), tensor(uint8) ): Constrain to any tensor type.
S in ( seq(tensor(bool)), seq(tensor(complex128)), seq(tensor(complex64)), seq(tensor(double)), seq(tensor(float)), seq(tensor(float16)), seq(tensor(int16)), seq(tensor(int32)), seq(tensor(int64)), seq(tensor(int8)), seq(tensor(string)), seq(tensor(uint16)), seq(tensor(uint32)), seq(tensor(uint64)), seq(tensor(uint8)) ): Constrain to any tensor type.
I in ( tensor(int32), tensor(int64) ): Constrain position to integral tensor. It must be a scalar(tensor of empty shape).
Examples
default
import numpy as np
import onnx
test_cases = {
"at_back": [np.array([10, 11, 12]).astype(np.int64)],
"at_front": [np.array([-2, -1, 0]), np.array([0]).astype(np.int64)],
}
sequence = [
np.array([1, 2, 3, 4]).astype(np.int64),
np.array([5, 6, 7]).astype(np.int64),
np.array([8, 9]).astype(np.int64),
]
for test_name, test_inputs in test_cases.items():
tensor = test_inputs[0].astype(np.int64)
if len(test_inputs) > 1:
node = onnx.helper.make_node(
"SequenceInsert",
inputs=["sequence", "tensor", "position"],
outputs=["output_sequence"],
)
position = test_inputs[1]
inserted = sequence_insert_reference_implementation(
sequence, tensor, position
)
expect(
node,
inputs=[sequence, tensor, position],
outputs=[inserted],
name="test_sequence_insert_" + test_name,
)
else:
node = onnx.helper.make_node(
"SequenceInsert",
inputs=["sequence", "tensor"],
outputs=["output_sequence"],
)
inserted = sequence_insert_reference_implementation(sequence, tensor)
expect(
node,
inputs=[sequence, tensor],
outputs=[inserted],
name="test_sequence_insert_" + test_name,
)