SimplifiedLayerNormalization#

SimplifiedLayerNormalization - 1#

Version

This version of the operator has been available since version 1.

Summary

Attributes

  • axis - INT : The first normalization dimension: normalization will be performed along dimensions axis : rank(inputs).

  • epsilon - FLOAT : The epsilon value to use to avoid division by zero.

  • stash_type - INT : type used for stash mean/inv_std_var

Inputs

  • X (heterogeneous) - T:

  • scale (heterogeneous) - V:

Outputs

Between 1 and 2 outputs.

  • Y (heterogeneous) - V:

  • inv_std_var (optional, heterogeneous) - U:

Type Constraints

  • T in ( tensor(bfloat16), tensor(double), tensor(float), tensor(float16) ): Constrain input X type to float tensors.

  • U in ( tensor(double), tensor(float) ): Constrain mean and inv_std_var to be float tensors.

  • V in ( tensor(bfloat16), tensor(double), tensor(float), tensor(float16) ): Constrain output Y and scale type to float tensors.

Examples