SimplifiedLayerNormalization#
SimplifiedLayerNormalization - 1#
Version
domain: main
since_version: 1
function:
support_level: SupportType.EXPERIMENTAL
shape inference: True
This version of the operator has been available since version 1.
Summary
Attributes
axis - INT : The first normalization dimension: normalization will be performed along dimensions axis : rank(inputs).
epsilon - FLOAT : The epsilon value to use to avoid division by zero.
stash_type - INT : type used for stash mean/inv_std_var
Inputs
X (heterogeneous) - T:
scale (heterogeneous) - V:
Outputs
Between 1 and 2 outputs.
Y (heterogeneous) - V:
inv_std_var (optional, heterogeneous) - U:
Type Constraints
T in ( tensor(bfloat16), tensor(double), tensor(float), tensor(float16) ): Constrain input X type to float tensors.
U in ( tensor(double), tensor(float) ): Constrain mean and inv_std_var to be float tensors.
V in ( tensor(bfloat16), tensor(double), tensor(float), tensor(float16) ): Constrain output Y and scale type to float tensors.
Examples