ai.onnx.ml - SVMClassifier#
SVMClassifier - 1#
Version
name: SVMClassifier (GitHub)
domain: ai.onnx.ml
since_version: 1
function:
support_level: SupportType.COMMON
shape inference: True
This version of the operator has been available since version 1 of domain ai.onnx.ml.
Summary
Attributes
classlabels_ints - INTS : Class labels if using integer labels.<br>One and only one of the ‘classlabels_*’ attributes must be defined.
classlabels_strings - STRINGS : Class labels if using string labels.<br>One and only one of the ‘classlabels_*’ attributes must be defined.
coefficients - FLOATS :
kernel_params - FLOATS : List of 3 elements containing gamma, coef0, and degree, in that order. Zero if unused for the kernel.
kernel_type - STRING : The kernel type, one of ‘LINEAR,’ ‘POLY,’ ‘RBF,’ ‘SIGMOID’.
post_transform - STRING : Indicates the transform to apply to the score. <br>One of ‘NONE,’ ‘SOFTMAX,’ ‘LOGISTIC,’ ‘SOFTMAX_ZERO,’ or ‘PROBIT’
prob_a - FLOATS : First set of probability coefficients.
prob_b - FLOATS : Second set of probability coefficients. This array must be same size as prob_a.<br>If these are provided then output Z are probability estimates, otherwise they are raw scores.
rho - FLOATS :
support_vectors - FLOATS :
vectors_per_class - INTS :
Inputs
X (heterogeneous) - T1:
Outputs
Y (heterogeneous) - T2:
Z (heterogeneous) - tensor(float):
Type Constraints
T1 in ( tensor(double), tensor(float), tensor(int32), tensor(int64) ): The input must be a tensor of a numeric type, either [C] or [N,C].
T2 in ( tensor(int64), tensor(string) ): The output type will be a tensor of strings or integers, depending on which of the classlabels_* attributes is used. Its size will match the bactch size of the input.
Examples