com.microsoft - GatherND#
GatherND - 1#
Version
name: GatherND (GitHub)
domain: com.microsoft
since_version: 1
function:
support_level: SupportType.COMMON
shape inference: True
This version of the operator has been available since version 1 of domain com.microsoft.
Summary
Inputs
data (heterogeneous) - T:
indices (heterogeneous) - Tind:
Outputs
output (heterogeneous) - T:
Type Constraints
T in ( tensor(bool), tensor(complex128), tensor(complex64), tensor(double), tensor(float), tensor(float16), tensor(int16), tensor(int32), tensor(int64), tensor(int8), tensor(string), tensor(uint16), tensor(uint32), tensor(uint64), tensor(uint8) ): Constrain input and output types to any tensor type.
Tind in ( tensor(int32), tensor(int64) ): Constrain indice type to int32 or int64
Examples
_int32
import numpy as np
import onnx
node = onnx.helper.make_node(
"GatherND",
inputs=["data", "indices"],
outputs=["output"],
)
data = np.array([[0, 1], [2, 3]], dtype=np.int32)
indices = np.array([[0, 0], [1, 1]], dtype=np.int64)
output = gather_nd_impl(data, indices, 0)
expected_output = np.array([0, 3], dtype=np.int32)
assert np.array_equal(output, expected_output)
expect(
node,
inputs=[data, indices],
outputs=[output],
name="test_gathernd_example_int32",
)
_float32
import numpy as np
import onnx
node = onnx.helper.make_node(
"GatherND",
inputs=["data", "indices"],
outputs=["output"],
)
data = np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]], dtype=np.float32)
indices = np.array([[[0, 1]], [[1, 0]]], dtype=np.int64)
output = gather_nd_impl(data, indices, 0)
expected_output = np.array([[[2, 3]], [[4, 5]]], dtype=np.float32)
assert np.array_equal(output, expected_output)
expect(
node,
inputs=[data, indices],
outputs=[output],
name="test_gathernd_example_float32",
)
_int32_batchdim_1
import numpy as np
import onnx
node = onnx.helper.make_node(
"GatherND",
inputs=["data", "indices"],
outputs=["output"],
batch_dims=1,
)
data = np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]], dtype=np.int32)
indices = np.array([[1], [0]], dtype=np.int64)
output = gather_nd_impl(data, indices, 1)
expected_output = np.array([[2, 3], [4, 5]], dtype=np.int32)
assert np.array_equal(output, expected_output)
expect(
node,
inputs=[data, indices],
outputs=[output],
name="test_gathernd_example_int32_batch_dim1",
)